Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spatially resolved edge currents and guided-wave electronic states in graphene

Abstract

Exploiting the light-like properties of carriers in graphene could allow extreme non-classical forms of electronic transport to be realized1,2,3,4,5,6,7,8. In this vein, finding ways to confine and direct electronic waves through nanoscale streams and streamlets, unimpeded by the presence of other carriers, has remained a grand challenge9,10,11,12. Inspired by guiding of light in fibre optics, here we demonstrate a route to engineer such a flow of electrons using a technique for mapping currents at submicron scales. We employ real-space imaging of current flow in graphene to provide direct evidence of the confinement of electron waves at the edges of a graphene crystal near charge neutrality. This is achieved by using superconducting interferometry in a graphene Josephson junction and reconstructing the spatial structure of conducting pathways using Fourier methods13. The observed edge currents arise from coherent guided-wave states, confined to the edge by band bending and transmitted as plane waves. As an electronic analogue of photon guiding in optical fibres, the observed states afford non-classical means for information transduction and processing at the nanoscale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ‘Fibre-optic’ modes and spatially resolved current imaging in a graphene Josephson junction.
Figure 2: Gate-tunable evolution of edge and bulk current-carrying states in monolayer graphene.
Figure 3: Edge and bulk currents in bilayer graphene with and without transverse electric field.
Figure 4: ‘Fibre-optic’ theoretical model of transport in graphene.

Similar content being viewed by others

References

  1. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  ADS  Google Scholar 

  2. Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nature Phys. 2, 620–625 (2006).

    Article  ADS  Google Scholar 

  3. Young, A. F. & Kim, P. Quantum interference and Klein tunnelling in graphene heterojunctions. Nature Phys. 5, 222–226 (2009).

    Article  ADS  Google Scholar 

  4. Campos, L. et al. Quantum and classical confinement of resonant states in a trilayer graphene Fabry–Perot interferometer. Nature Commun. 3, 1239 (2012).

    Article  ADS  Google Scholar 

  5. Varlet, A. et al. Fabry–Pérot interference in gapped bilayer graphene with broken anti-Klein tunneling. Phys. Rev. Lett. 113, 116601 (2014).

    Article  ADS  Google Scholar 

  6. Cheianov, V. V., Fal’ko, V. & Altshuler, B. L. The focusing of electron flow and a Veselago lens in graphene p–n junctions. Science 315, 1252–1255 (2007).

    Article  ADS  Google Scholar 

  7. Shytov, A. V., Rudner, M. S. & Levitov, L. S. Klein backscattering and Fabry–Perot interference in graphene heterojunctions. Phys. Rev. Lett. 101, 156804 (2008).

    Article  ADS  Google Scholar 

  8. Mayorov, A. S. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396–2399 (2011).

    Article  ADS  Google Scholar 

  9. Pereira, J. M., Mlinar, V., Peeters, F. M. & Vasilopoulos, P. Confined states and direction-dependent transmission in graphene quantum wells. Phys. Rev. B 74, 045424 (2006).

    Article  ADS  Google Scholar 

  10. Zhang, F.-M., He, Y. & Chen, X. Guided modes in graphene waveguides. Appl. Phys. Lett. 94, 212105 (2009).

    Article  ADS  Google Scholar 

  11. Hartmann, R. R., Robinson, N. J. & Portnoi, M. E. Smooth electron waveguides in graphene. Phys. Rev. B 81, 245431 (2010).

    Article  ADS  Google Scholar 

  12. Williams, J. R., Low, T., Lundstrom, M. S. & Marcus, C. M. Gate-controlled guiding of electrons in graphene. Nature Nanotech. 6, 222–225 (2011).

    Article  ADS  Google Scholar 

  13. Dynes, R. C. & Fulton, T. A. Supercurrent density distribution in Josephson junctions. Phys. Rev. B 3, 3015–3023 (1971).

    Article  ADS  Google Scholar 

  14. Taychatanapat, T., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Electrically tunable transverse magnetic focusing in graphene. Nature Phys. 9, 225–229 (2013).

    Article  ADS  Google Scholar 

  15. Ritter, K. A. & Lyding, J. W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nature Mater. 8, 235–242 (2009).

    Article  ADS  Google Scholar 

  16. Tao, C. et al. Spatially resolving edge states of chiral graphene nanoribbons. Nature Phys. 7, 616–620 (2011).

    Article  ADS  Google Scholar 

  17. Oostinga, J. B., Heersche, H. B., Liu, X., Morpurgo, A. F. & Vandersypen, L. M. K. Gate-induced insulating state in bilayer graphene devices. Nature Mater. 7, 151–157 (2007).

    Article  ADS  Google Scholar 

  18. Bischoff, D., Libisch, F., Burgdrfer, J., Ihn, T. & Ensslin, K. Characterizing wave functions in graphene nanodevices: Electronic transport through ultrashort graphene constrictions on a boron nitride substrate. Phys. Rev. B 90, 115405 (2014).

    Article  ADS  Google Scholar 

  19. Barone, A. & Paterno, G. Physics and Applications of the Josephson Effect (John Wiley, 1982).

    Book  Google Scholar 

  20. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    Article  ADS  Google Scholar 

  21. Tinkham, M. Introduction to Superconductivity (McGraw-Hill, 1975).

    Google Scholar 

  22. Cuevas, J. C. & Bergeret, F. S. Magnetic interference patterns and vortices in diffusive SNS junctions. Phys. Rev. Lett. 99, 217002 (2007).

    Article  ADS  Google Scholar 

  23. Hui, H.-Y., Lobos, A. M., Sau, J. D. & Sarma, S. Das Proximity-induced superconductivity and Josephson critical current in quantum spin Hall systems. Phys. Rev. B 90, 224517 (2014).

    Article  ADS  Google Scholar 

  24. Jaklevic, R. C., Lambe, J. & Mercereau, J. E. Quantum interference effects in Josephson tunneling. Phys. Rev. Lett. 12, 159–160 (1964).

    Article  ADS  Google Scholar 

  25. McCann, E. Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B 74, 161403 (2006).

    Article  ADS  Google Scholar 

  26. Castro, E. V. et al. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007).

    Article  ADS  Google Scholar 

  27. Jackiw, R. & Rebbi, C. Solitons with fermion number. Phys. Rev. D 13, 3398–3409 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  28. Silvestrov, P. G. & Efetov, K. B. Charge accumulation at the boundaries of a graphene strip induced by a gate voltage: Electrostatic approach. Phys. Rev. B 77, 155436 (2008).

    Article  ADS  Google Scholar 

  29. Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996).

    Article  ADS  Google Scholar 

  30. Akhmerov, A. R. & Beenakker, C. W. J. Boundary conditions for Dirac fermions on a terminated honeycomb lattice. Phys. Rev. B 77, 085423 (2008).

    Article  ADS  Google Scholar 

  31. Castro, E. V., Peres, N. M. R., dos Santos, J. M. B. L., Neto, A. H. C. & Guinea, F. Localized states at zigzag edges of bilayer graphene. Phys. Rev. Lett. 100, 026802 (2008).

    Article  ADS  Google Scholar 

  32. Allen, M. T. et al. Visualization of phase-coherent electron interference in a ballistic graphene josephson junction. Preprint at http://arxiv.org/abs/1506.06734 (2015).

  33. Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: Magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

    Article  ADS  Google Scholar 

  34. Jung, J., Zhang, F., Qiao, Z. & MacDonald, A. H. Valley-Hall kink and edge states in multilayer graphene. Phys. Rev. B 84, 075418 (2011).

    Article  ADS  Google Scholar 

  35. Zhang, F., MacDonald, A. H. & Mele, E. J. Valley Chern numbers and boundary modes in gapped bilayer graphene. Proc. Natl Acad. Sci. USA 110, 10546–10551 (2013).

    Article  ADS  Google Scholar 

  36. Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank O. Dial, B. Halperin, V. Manucharyan and J. Sau for helpful discussions. This work is supported by the Center for Integrated Quantum Materials (CIQM) under NSF award 1231319 (L.S.L. and O.S.) and the US DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under award DE-SC0001819 (P.J.-H., M.T.A., A.Y.). Nanofabrication was performed at the Harvard Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN) supported by NSF award ECS-0335765. A.R.A. was supported by the Foundation for Fundamental Research on Matter (FOM), the Netherlands Organization for Scientific Research (NWO/OCW). I.C.F. was supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC Project MUNATOP, the US–Israel Binational Science Foundation, and the Minerva Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M.T.A. and A.Y. designed and fabricated the devices, performed the experiments, analysed the data, and wrote the paper. O.S. and L.S.L. developed the theoretical model of guided edge modes and wrote the paper. A.R.A. and I.C.F. performed the Bayesian analysis of the Fraunhofer patterns. P.J.-H. contributed to discussions of the results and wrote the paper. K.W. and T.T. provided the hexagonal boron nitride crystals used in device fabrication.

Corresponding author

Correspondence to A. Yacoby.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1507 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allen, M., Shtanko, O., Fulga, I. et al. Spatially resolved edge currents and guided-wave electronic states in graphene. Nature Phys 12, 128–133 (2016). https://doi.org/10.1038/nphys3534

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3534

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing