Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Soliton-like magnetic domain wall motion induced by the interfacial Dzyaloshinskii–Moriya interaction

Abstract

Topological defects such as magnetic solitons, vortices and skyrmions have started to play an important role in modern magnetism because of their extraordinary stability1, which can be exploited in the production of memory devices. Recently, a type of antisymmetric exchange interaction, namely the Dzyaloshinskii–Moriya interaction (DMI; refs 2,3), has been uncovered and found to influence the formation of topological defects4,5,6,7. Exploring how the DMI affects the dynamics of topological defects is therefore an important task. Here we investigate the dynamics of the magnetic domain wall (DW) under a DMI by developing a real time DW detection scheme. For a weak DMI, the DW velocity increases with the external field and reaches a peak velocity at a threshold field, beyond which it abruptly decreases. For a strong DMI, on the other hand, the velocity reduction is completely suppressed and the peak velocity is maintained constant even far above the threshold field. Such a distinct trend of the velocity can be explained in terms of a magnetic soliton, the topology of which is protected during its motion. Our results therefore shed light on the physics of dynamic topological defects, which paves the way for future work in topology-based memory applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of Walker breakdown (WB) phenomenon.
Figure 2: Device structure with measurement set-up and field-driven domain wall (DW) velocity.
Figure 3: Snapshots of a moving domain wall (DW).
Figure 4: Energy profiles and unidirectional collision of vertical Bloch lines (VBLs).

Similar content being viewed by others

References

  1. Braun, H.-B. Topological effects in nanomagnetism: From superparamagnetism to chiral quantum solitons. Adv. Phys. 61, 1–116 (2012).

    Article  ADS  Google Scholar 

  2. Dzyaloshinskii, I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).

    Article  ADS  Google Scholar 

  3. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    Article  ADS  Google Scholar 

  4. Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nature Nanotech. 8, 152–156 (2013).

    Article  ADS  Google Scholar 

  5. Thiaville, A., Rohart, S., Jué, É., Cros, V. & Fert, A. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Europhys. Lett. 100, 57002 (2012).

    Article  ADS  Google Scholar 

  6. Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nature Mater. 12, 611–616 (2013).

    Article  ADS  Google Scholar 

  7. Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. Chiral spin torque at magnetic domain walls. Nature Nanotech. 8, 527–533 (2013).

    Article  ADS  Google Scholar 

  8. Malozemoff, A. P. & Slonczewski, J. C. Magnetic Domain Walls in Bubble Materials (Academic Press, 1979).

    Google Scholar 

  9. Mikeska, H. J. Solitons in a one-dimensional magnet with an easy plane. J. Phys. C 11, L29–L32 (1978).

    Article  Google Scholar 

  10. Hubert, A. & Schäfer, R. Magnetic Domains (Springer, 1998).

    Google Scholar 

  11. Ono, T. et al. Propagation of a magnetic domain wall in a submicrometer magnetic wire. Science 284, 468–469 (1999).

    Article  ADS  Google Scholar 

  12. Yamaguchi, A. Real-space observation of current-driven domain wall motion in submicron magnetic wires. Phys. Rev. Lett. 92, 077205 (2004).

    Article  ADS  Google Scholar 

  13. Allwood, D. A. et al. Magnetic domain-wall logic. Science 309, 1688–1692 (2005).

    Article  ADS  Google Scholar 

  14. Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    Article  ADS  Google Scholar 

  15. Schryer, N. L. & Walker, L. R. The motion of 180° domain walls in uniform dc magnetic fields. J. Appl. Phys. 45, 5406–5421 (1974).

    Article  ADS  Google Scholar 

  16. Nakatani, Y., Thiaville, A. & Miltat, J. Faster magnetic walls in rough wires. Nature Mater. 2, 521–523 (2003).

    Article  ADS  Google Scholar 

  17. Lee, J. Y., Lee, K. S. & Kim, S. K. Remarkable enhancement of domain-wall velocity in magnetic nanostripes. Appl. Phys. Lett. 91, 122513 (2007).

    Article  ADS  Google Scholar 

  18. Yan, M., Andreas, C., Kákay, A., Garcia-Sánchez, F. & Hertel, R. Fast domain wall dynamics in magnetic nanotubes: Suppression of Walker breakdown and Cherenkov-like spin wave emission. Appl. Phys. Lett. 99, 122505 (2011).

    Article  ADS  Google Scholar 

  19. Burn, D. M. & Atkinson, D. Suppression of Walker breakdown in magnetic domain wall propagation through structural control of spin wave emission. Appl. Phys. Lett. 102, 242414 (2013).

    Article  ADS  Google Scholar 

  20. Bryan, M. T., Schrefl, T., Atkinson, D. & Allwood, D. A. Magnetic domain wall propagation in nanowires under transverse magnetic fields. J. Appl. Phys. 103, 073906 (2008).

    Article  ADS  Google Scholar 

  21. Ueda, K. et al. Transition in mechanism for current-driven magnetic domain wall dynamics. Appl. Phys. Express 7, 053006 (2014).

    Article  ADS  Google Scholar 

  22. Kim, K.-J. et al. Trade off between low-power operation and thermal stability in magnetic domain-wall-motion devices driven by spin Hall torque. Appl. Phys. Express 7, 053003 (2014).

    Article  ADS  Google Scholar 

  23. Taniguchi, T. Different stochastic behaviors for magnetic field and current in domain wall creep motion. Appl. Phys. Express 7, 053005 (2014).

    Article  ADS  Google Scholar 

  24. Metaxas, P. J. et al. Creep and Flow Regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy. Phys. Rev. Lett. 99, 217208 (2007).

    Article  ADS  Google Scholar 

  25. Slonczewskii, J. C. Theory of Bloch-line and Bloch-wall motion. J. Appl. Phys. 45, 2705–2715 (1974).

    Article  ADS  Google Scholar 

  26. Kim, S.-K., Lee, J.-Y., Choi, Y.-S., Guslienko, K. Y. & Lee, K.-S. Underlying mechanism of domain-wall motions in soft magnetic thin-film nanostripes beyond the velocity-breakdown regime. Appl. Phys. Lett. 93, 052503 (2008).

    Article  ADS  Google Scholar 

  27. Guslienko, K. Y., Lee, J.-Y. & Kim, S.-K. Dynamics of domain walls in soft magnetic nanostripes: Topological soliton approach. IEEE Trans. Mag. 44, 3079–3082 (2008).

    Article  ADS  Google Scholar 

  28. Chetkin, M. V., Parygina, I. V., Roman, V. G. & Savchenko, L. L. Unidirectional collisions of vertical Bloch lines. Sov. Phys. JETP 78, 93–97 (1994).

    ADS  Google Scholar 

  29. Wang, X. S., Yan, P., Shen, Y. H., Bauer, G. E. W. & Wang, X. R. Domain wall propagation thorough spin wave emission. Phys. Rev. Lett. 109, 167209 (2012).

    Article  ADS  Google Scholar 

  30. Wieser, R., Vedmedenko, E. Y. & Wiesendanger, R. Domain wall motion damped by the emission of spin waves. Phys. Rev. B 81, 024405 (2010).

    Article  ADS  Google Scholar 

  31. Mizukami, S. Gilbert damping in Ni/Co multilayer films exhibiting large perpendicular anisotropy. Appl. Phys. Express 4, 013005 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank H. Tanigawa, T. Suzuki and E. Kariyada for providing us with high-quality Co/Ni films. This work was partly supported by JSPS KAKENHI Grant Numbers 15H05702, 26870300, 26870304, 26103002, 26390008, 25 4251, Collaborative Research Program of the Institute for Chemical Research, Kyoto University, and R&D Project for ICT Key Technology of MEXT from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Contributions

T.O. and K.-J.K. planned and supervised the study. Y.Y., K.-J.K., T.Taniguchi, T.Tono, K.U. and R.H. designed the experimental set-up. Y.Y. fabricated the devices, performed the experiment, and collected data. K.Y. and Y.N. performed the simulation. Y.Y., K.-J.K., T.O., K.Y. and Y.N. analysed the data. Y.Y., K.-J.K., T.M. and T.O. wrote the manuscript. All authors discussed the results.

Corresponding authors

Correspondence to Kab-Jin Kim or Teruo Ono.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2150 kb)

Supplementary Movie 1

Supplementary Movie (MOV 1738 kb)

Supplementary Movie 2

Supplementary Movie (MOV 3344 kb)

Supplementary Movie 3

Supplementary Movie (MOV 1736 kb)

Supplementary Movie 4

Supplementary Movie (MOV 4152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshimura, Y., Kim, KJ., Taniguchi, T. et al. Soliton-like magnetic domain wall motion induced by the interfacial Dzyaloshinskii–Moriya interaction. Nature Phys 12, 157–161 (2016). https://doi.org/10.1038/nphys3535

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3535

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing