Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ising pairing in superconducting NbSe2 atomic layers

Abstract

The properties of two-dimensional transition metal dichalcogenides arising from strong spin–orbit interactions and valley-dependent Berry curvature effects have recently attracted considerable interest1,2,3,4,5,6,7. Although single-particle and excitonic phenomena related to spin–valley coupling have been extensively studied1,3,4,5,6, the effects of spin–valley coupling on collective quantum phenomena remain less well understood. Here we report the observation of superconducting monolayer NbSe2 with an in-plane upper critical field of more than six times the Pauli paramagnetic limit, by means of magnetotransport measurements. The effect can be interpreted in terms of the competing Zeeman effect and large intrinsic spin–orbit interactions in non-centrosymmetric NbSe2 monolayers, where the electron spin is locked to the out-of-plane direction. Our results provide strong evidence of unconventional Ising pairing protected by spin–momentum locking, and suggest further studies of non-centrosymmetric superconductivity with unique spin and valley degrees of freedom in the two-dimensional limit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spin–momentum and spin–layer locking in NbSe2.
Figure 2: Layer number dependence of superconductivity in NbSe2.
Figure 3: Superconductivity of bulk, trilayer and monolayer NbSe2 under a magnetic field.
Figure 4: HT superconducting phase diagram for atomically thin NbSe2.

Similar content being viewed by others

References

  1. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nature Phys. 10, 343–350 (2014).

    Article  ADS  Google Scholar 

  2. Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  ADS  Google Scholar 

  3. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

    Article  ADS  Google Scholar 

  4. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

    Article  ADS  Google Scholar 

  5. Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    Article  ADS  Google Scholar 

  6. Jones, A. M. et al. Spin-layer locking effects in optical orientation of exciton spin in bilayer WSe2 . Nature Phys. 10, 130–134 (2014).

    Article  ADS  Google Scholar 

  7. Riley, J. M. et al. Direct observation of spin-polarized bulk bands in an inversion-symmetric semiconductor. Nature Phys. 10, 835–839 (2014).

    Article  ADS  Google Scholar 

  8. Mattheiss, L. F. Band structures of transition-metal-dichalcogenide layer compounds. Phys. Rev. B 8, 3719–3740 (1973).

    Article  ADS  Google Scholar 

  9. Foner, S. & McNiff, E. J. Upper critical fields of layered superconducting NbSe2 at low temperature. Phys. Lett. A 45, 429–430 (1973).

    Article  ADS  Google Scholar 

  10. de Trey, P., Gygax, S. & Jan, J. P. Anisotropy of Ginzburg–Landau parameter κ in NbSe2 . J. Low Temp. Phys. 11, 421–434 (1973).

    Article  ADS  Google Scholar 

  11. Hess, H. F., Robinson, R. B., Dynes, R. C., Valles, J. M. & Waszczak, J. V. Scanning-tunneling-microscope observation of the Abrikosov flux lattice and the density of states near and inside a fluxoid. Phys. Rev. Lett. 62, 214–216 (1989).

    Article  ADS  Google Scholar 

  12. Huang, C. L. et al. Experimental evidence for a two-gap structure of superconducting NbSe2: A specific-heat study in external magnetic fields. Phys. Rev. B 76, 212504 (2007).

    Article  ADS  Google Scholar 

  13. Yokoya, T. et al. Fermi surface sheet-dependent superconductivity in 2H-NbSe2 . Science 294, 2518–2520 (2001).

    Article  ADS  Google Scholar 

  14. Rahn, D. J. et al. Gaps and kinks in the electronic structure of the superconductor 2H-NbSe2 from angle-resolved photoemission at 1 K. Phys. Rev. B 85, 224532 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  15. Frindt, R. F. Superconductivity in ultrathin NbSe2 layers. Phys. Rev. Lett. 28, 299–301 (1972).

    Article  ADS  Google Scholar 

  16. Staley, N. E. et al. Electric field effect on superconductivity in atomically thin flakes of NbSe2 . Phys. Rev. B 80, 184505 (2009).

    Article  ADS  Google Scholar 

  17. Xi, X. et al. Strongly enhanced charge-density-wave order in monolayer NbSe2 . Nature Nanotech. 10, 765–769 (2015).

    Article  ADS  Google Scholar 

  18. Cao, Y. et al. Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett. 15, 4914–4921 (2015).

    Article  ADS  Google Scholar 

  19. Johannes, M. D., Mazin, I. I. & Howells, C. A. Fermi-surface nesting and the origin of the charge-density wave in NbSe2 . Phys. Rev. B 73, 205102 (2006).

    Article  ADS  Google Scholar 

  20. Tinkham, M. Introduction to Superconductivity 2nd edn (McGraw-Hill, 1996).

    Google Scholar 

  21. Chandrasekhar, B. S. A note on the maximum critical field of high-field superconductors. Appl. Phys. Lett. 1, 7–8 (1962).

    Article  ADS  Google Scholar 

  22. Clogston, A. M. Upper limit for critical field in hard superconductors. Phys. Rev. Lett. 9, 266–267 (1962).

    Article  ADS  Google Scholar 

  23. Bauer, E. & Sigrist, M. Non-centrosymmetric Superconductors: Introduction and Overview (Springer, 2012).

    Book  Google Scholar 

  24. Sigrist, M. Introduction to unconventional superconductivity in non-centrosymmetric metals. AIP Conf. Proc. 1162, 55–97 (2009).

    Article  ADS  Google Scholar 

  25. Youn, S. J. et al. Role of strong spin–orbit coupling in the superconductivity of the hexagonal pnictide SrPtAs. Phys. Rev. B 85, 220505(R) (2012).

    Article  ADS  Google Scholar 

  26. Fiory, A. T. & Hebard, A. F. Electron mobility, conductivity, and superconductivity near the metal-insulator transition. Phys. Rev. Lett. 52, 2057–2060 (1984).

    Article  ADS  Google Scholar 

  27. Beasley, M. R., Mooij, J. E. & Orlando, T. P. Possibility of vortex-antivortex pair dissociation in two-dimensional superconductors. Phys. Rev. Lett. 42, 1165–1168 (1979).

    Article  ADS  Google Scholar 

  28. Aslamazov, L. G. & Larkin, A. I. The influence of fluctuation pairing of electrons on conductivity of normal metal. Phys. Lett. A 26, 238–239 (1968).

    Article  ADS  Google Scholar 

  29. Li, Q. et al. Interlayer coupling effect in high-Tc superconductors probed by YBa2Cu3O7−x/PrBa2Cu3O7−x superlattices. Phys. Rev. Lett. 64, 3086–3089 (1990).

    Article  ADS  Google Scholar 

  30. Schneider, T., Gedik, Z. & Ciraci, S. Transition temperature of superconductor–insulator superlattices. Europhys. Lett. 14, 261–266 (1991).

    Article  ADS  Google Scholar 

  31. Prober, D. E., Schwall, R. E. & Beasley, M. R. Upper critical fields and reduced dimensionality of the superconducting layered compounds. Phys. Rev. B 21, 2717–2733 (1980).

    Article  ADS  Google Scholar 

  32. Tedrow, P. M. & Meservey, R. Critical magnetic field of very thin superconducting aluminum films. Phys. Rev. B 25, 171–178 (1982).

    Article  ADS  Google Scholar 

  33. Lee, I. J., Chaikin, P. M. & Naughton, M. J. Exceeding the Pauli paramagnetic limit in the critical field of (TMTSF)2PF6 . Phys. Rev. B 62, 14669–14672 (2000).

    Article  ADS  Google Scholar 

  34. Klemm, R. A. Layered Superconductors Vol. 1 (Oxford Univ. Press, 2012).

    Google Scholar 

  35. Kimura, N. et al. Extremely high upper critical field of the noncentrosymmetric heavy Fermion superconductor CeRhSi3 . Phys. Rev. Lett. 98, 197001 (2007).

    Article  ADS  Google Scholar 

  36. Saito, Y. et al. Superconductivity protected by spin-valley locking in gate-tuned MoS2. Preprint at http://arXiv.org/abs/1506.04146 (2015).

  37. Lu, J. M. et al. Two dimensional Ising superconductivity in gated MoS2. Preprint at http://arXiv.org/abs/1506.07620 (2015).

  38. Agosta, C. C. et al. Experimental and semiempirical method to determine the Pauli-limiting field in quasi-two-dimensional superconductors as applied to κ-(BEDT-TTF)2Cu(NCS)2: Strong evidence of a FFLO state. Phys. Rev. B 85, 214514 (2012).

    Article  ADS  Google Scholar 

  39. Rainer, D. & Bergmann, G. Temperature dependence of Hc2 and κ1 in strong coupling superconductors. J. Low Temp. Phys. 14, 501–519 (1974).

    Article  ADS  Google Scholar 

  40. Orlando, T. P. & Beasley, M. R. Pauli limiting and the possibility of spin fluctuations in the A15 superconductors. Phys. Rev. Lett. 46, 1598–1601 (1981).

    Article  ADS  Google Scholar 

  41. Matsuda, Y. & Shimahara, H. Fulde–Ferrell–Larkin–Ovchinnikov state in heavy fermion superconductors. J. Phys. Soc. Jpn 76, 051005 (2007).

    Article  ADS  Google Scholar 

  42. Maki, K. Effect of Pauli paramagnetism on magnetic properties of high-field superconductors. Phys. Rev. 148, 362–369 (1966).

    Article  ADS  Google Scholar 

  43. Werthamer, N. R., Helfand, E. & Hohenberg, P. C. Temperature and purity dependence of superconducting critical field, Hc2. III. Electron spin and spin–orbit effects. Phys. Rev. 147, 295–302 (1966).

    Article  ADS  Google Scholar 

  44. Klemm, R. A., Luther, A. & Beasley, M. R. Theory of upper critical field in layered superconductors. Phys. Rev. B 12, 877–891 (1975).

    Article  ADS  Google Scholar 

  45. Kiss, T. et al. Charge-order-maximized momentum-dependent superconductivity. Nature Phys. 3, 720–725 (2007).

    Article  ADS  Google Scholar 

  46. Goh, S. K. et al. Anomalous upper critical field in CeCoIn5/YbCoIn5 superlattices with a Rashba-type heavy Fermion interface. Phys. Rev. Lett. 109, 157006 (2012).

    Article  ADS  Google Scholar 

  47. Saint-James, D., Sarma, G. & Thomas, E. J. Type II Superconductivity (Pergamon, 1969).

    Google Scholar 

  48. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. H. W. Chan for fruitful discussions. This work was supported by the US Department of Energy, Office of Basic Energy Sciences (contract No. DESC0013883 (K.F.M.) and DESC0012635 (J.S.)). Optical spectroscopy was supported by the National Science Foundation (NSF) under Award No. DMR-1410407. The NHMFL is supported by the NSF Cooperative Agreement No. DMR-1157490 and the State of Florida. K.T.L. is supported by HKUST3/CRF/13G and the Croucher Innovation Grant. The work in Lausanne was supported by the Swiss National Science Foundation. We also acknowledge support from the NSF MRSEC under Award No. DMR-1420451 (Z.W.) and the MRI-2D Center at Penn State University (X.X.).

Author information

Authors and Affiliations

Authors

Contributions

J.S. and K.F.M. designed the experiments. X.X. and Z.W. performed the experiments with the assistance of W.Z. at the Penn State Physics Low Temperature Laboratory, and of J.-H.P. at the National High Magnetic Field Laboratory. X.X., Z.W., J.S. and K.F.M. analysed the data and co-wrote the paper. K.T.L. contributed to the interpretation of the results. H.B. and L.F. contributed NbSe2 crystals. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Jie Shan or Kin Fai Mak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 23345 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, X., Wang, Z., Zhao, W. et al. Ising pairing in superconducting NbSe2 atomic layers. Nature Phys 12, 139–143 (2016). https://doi.org/10.1038/nphys3538

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3538

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing