Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Photo-Nernst current in graphene

Abstract

Photocurrent measurements provide a powerful means of studying the spatially resolved optoelectronic and electrical properties of a material or device1,2,3,4,5,6,7. Generally speaking there are two classes of mechanism for photocurrent generation: those involving separation of electrons and holes, and thermoelectric effects driven by electron temperature gradients. Here we introduce a new member in the latter class: the photo-Nernst effect. In graphene devices in a perpendicular magnetic field we observe photocurrent generated uniformly along the free edges, with opposite sign at opposite edges. The signal is antisymmetric in field, shows a peak versus gate voltage at the neutrality point flanked by wings of opposite sign at low fields, and exhibits quantum oscillations at higher fields. These features are all explained by the Nernst effect8,9,10 associated with laser-induced electron heating6,11,12,13,14. This ‘photo-Nernst’ current provides a simple and clear demonstration of the Shockley–Ramo nature of long-range photocurrent generation in a gapless material5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scanning photocurrent microscopy (SPCM) of a two-terminal monolayer graphene device in a perpendicular magnetic field.
Figure 2: Analysis and modelling of the photocurrent induced by a moderate magnetic field.
Figure 3: Dependence of the photo-Nernst current on gate voltage.
Figure 4: Quantum oscillations in the photo-Nernst effect.

Similar content being viewed by others

References

  1. Zhong, Z., Gabor, N. M., Sharping, J. E., Gaeta, A. L. & McEuen, P. L. Terahertz time-domain measurement of ballistic electron resonance in a single-walled carbon nanotube. Nature Nanotech. 3, 201–205 (2008).

    Article  Google Scholar 

  2. McIver, J. W., Hsieh, D., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Control over topological insulator photocurrents with light polarization. Nature Nanotech. 7, 96–100 (2012).

    Article  ADS  Google Scholar 

  3. Drexler, C. et al. Magnetic quantum ratchet effect in graphene. Nature Nanotech. 8, 104–107 (2013).

    Article  ADS  Google Scholar 

  4. Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    Article  ADS  Google Scholar 

  5. Song, J. C. W. & Levitov, L. S. Shockley–Ramo theorem and long-range photocurrent response in gapless materials. Phys. Rev. B 90, 075415 (2014).

    Article  ADS  Google Scholar 

  6. Gabor, N. M. et al. Hot carrier–assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    Article  ADS  Google Scholar 

  7. Nazin, G., Zhang, Y., Zhang, L., Sutter, E. & Sutter, P. Visualization of charge transport through Landau levels in graphene. Nature Phys. 6, 870–874 (2010).

    Article  ADS  Google Scholar 

  8. Zuev, Y. M., Chang, W. & Kim, P. Thermoelectric and Magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett. 102, 096807 (2009).

    Article  ADS  Google Scholar 

  9. Wei, P., Bao, W., Pu, Y., Lau, C. N. & Shi, J. Anomalous thermoelectric transport of Dirac particles in graphene. Phys. Rev. Lett. 102, 166808 (2009).

    Article  ADS  Google Scholar 

  10. Checkelsky, J. G. & Ong, N. P. Thermopower and Nernst effect in graphene in a magnetic field. Phys. Rev. B 80, 081413 (2009).

    Article  ADS  Google Scholar 

  11. Song, J. C. W., Rudner, M. S., Marcus, C. M. & Levitov, L. S. Hot carrier transport and photocurrent response in graphene. Nano Lett. 11, 4688–4692 (2011).

    Article  ADS  Google Scholar 

  12. Ma, Q. et al. Competing channels for hot-electron cooling in graphene. Phys. Rev. Lett. 112, 247401 (2014).

    Article  ADS  Google Scholar 

  13. Sun, D. et al. Ultrafast hot-carrier-dominated photocurrent in graphene. Nature Nanotech. 7, 114–118 (2012).

    Article  ADS  Google Scholar 

  14. Graham, M. W., Shi, S.-F., Ralph, D. C., Park, J. & McEuen, P. L. Photocurrent measurements of supercollision cooling in graphene. Nature Phys. 9, 103–108 (2013).

    Article  ADS  Google Scholar 

  15. LeeEduardo, J. H., Balasubramanian, K., Weitz, R. T., Burghard, M. & Kern, K. Contact and edge effects in graphene devices. Nature Nanotech. 3, 486–490 (2008).

    Article  ADS  Google Scholar 

  16. Park, J., Ahn, Y. H. & Ruiz-Vargas, C. Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 9, 1742–1746 (2009).

    Article  ADS  Google Scholar 

  17. Xu, X., Gabor, N. M., Alden, J. S., van der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2009).

    Article  ADS  Google Scholar 

  18. Liu, C.-H., Chang, Y.-C., Norris, T. B. & Zhong, Z. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nature Nanotech. 9, 273–278 (2014).

    Article  ADS  Google Scholar 

  19. Lemme, M. C. et al. Gate-activated photoresponse in a graphene p–n junction. Nano Lett. 11, 4134–4137 (2011).

    Article  ADS  Google Scholar 

  20. Urich, A., Unterrainer, K. & Mueller, T. Intrinsic response time of graphene photodetectors. Nano Lett. 11, 2804–2808 (2011).

    Article  ADS  Google Scholar 

  21. Song, J. C. W., Reizer, M. Y. & Levitov, L. S. Disorder-assisted electron-phonon scattering and cooling pathways in graphene. Phys. Rev. Lett. 109, 106602 (2012).

    Article  ADS  Google Scholar 

  22. Betz, A. C. et al. Supercollision cooling in undoped graphene. Nature Phys. 9, 109–112 (2013).

    Article  ADS  Google Scholar 

  23. Johannsen, J. C. et al. Direct view of hot carrier dynamics in graphene. Phys. Rev. Lett. 111, 027403 (2013).

    Article  ADS  Google Scholar 

  24. Tielrooij, K. J. et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nature Phys. 9, 248–252 (2013).

    Article  ADS  Google Scholar 

  25. Yan, J. et al. Dual-gated bilayer graphene hot-electron bolometer. Nature Nanotech. 7, 472–478 (2012).

    Article  ADS  Google Scholar 

  26. Lui, C. H., Mak, K. F., Shan, J. & Heinz, T. F. Ultrafast photoluminescence from graphene. Phys. Rev. Lett. 105, 127404 (2010).

    Article  ADS  Google Scholar 

  27. Shockley, W. Currents to conductors induced by a moving point charge. J. Appl. Phys. 9, 635–636 (1938).

    Article  ADS  Google Scholar 

  28. Ramo, S. Currents induced by electron motion. Proc. IRE 27, 584–585 (1939).

    Article  Google Scholar 

  29. Miao, F. et al. Phase-coherent transport in graphene quantum billiards. Science 317, 1530–1533 (2007).

    Article  ADS  Google Scholar 

  30. Freitag, M. et al. Energy dissipation in graphene field-effect transistors. Nano Lett. 9, 1883–1888 (2009).

    Article  ADS  Google Scholar 

  31. Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).

    Article  ADS  Google Scholar 

  32. Luk’yanchuk, I. A., Varlamov, A. A. & Kavokin, A. V. Giant Nernst–Ettingshausen oscillations in semiclassically strong magnetic fields. Phys. Rev. Lett. 107, 016601 (2011).

    Article  ADS  Google Scholar 

  33. Jonson, M. & Girvin, S. M. Thermoelectric effect in a weakly disordered inversion layer subject to a quantizing magnetic field. Phys. Rev. B 29, 1939–1946 (1984).

    Article  ADS  Google Scholar 

  34. Wang, Y., Li, L. & Ong, N. P. Nernst effect in high-TC superconductors. Phys. Rev. B 73, 024510 (2006).

    Article  ADS  Google Scholar 

  35. Behnia, K., Méasson, M.-A. & Kopelevich, Y. Oscillating Nernst–Ettingshausen effect in bismuth across the quantum limit. Phys. Rev. Lett. 98, 166602 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank B. Spivak, A. Andreev, D. Xiao and C. Laumann for discussions. This work was supported by the National Science Foundation (NSF, DMR-1150719). The experimental set-up was partially supported by DoE BES (DE-SC0008145). Z.F. and D.H.C. are supported by DoE BES (DE-SC0002197). This material is based in part upon work supported by the State of Washington through the University of Washington Clean Energy Institute. Device fabrication was performed at the University of Washington Microfabrication Facility and the NSF-funded Nanotech User Facility.

Author information

Authors and Affiliations

Authors

Contributions

X.X. conceived the experiment; G.A. built the experimental set-up; H.C. performed the experiments, assisted by G.A.; H.C., Z.F. and J.R. fabricated the devices; H.C., X.X., D.H.C. and Z.F. analysed the results; Z.F. and D.H.C. did the modelling; and H.C., D.H.C. and X.X. wrote the paper with comments from all authors.

Corresponding authors

Correspondence to David H. Cobden or Xiaodong Xu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 826 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, H., Aivazian, G., Fei, Z. et al. Photo-Nernst current in graphene. Nature Phys 12, 236–239 (2016). https://doi.org/10.1038/nphys3549

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3549

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing