Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene

Abstract

The field of ‘Valleytronics’ has recently been attracting growing interest as a promising concept for the next generation electronics, because non-dissipative pure valley currents with no accompanying net charge flow can be manipulated for computational use, akin to pure spin currents1. Valley is a quantum number defined in an electronic system whose energy bands contain energetically degenerate but non-equivalent local minima (conduction band) or maxima (valence band) due to a certain crystal structure. Specifically, spatial inversion symmetry broken two-dimensional honeycomb lattice systems exhibiting Berry curvature is a subset of possible systems that enable optical2,3,4,5, magnetic6,7,8,9 and electrical control of the valley degree of freedom10,11,12. Here we use dual-gated bilayer graphene to electrically induce and control broken inversion symmetry (or Berry curvature) as well as the carrier density for generating and detecting the pure valley current. In the insulating regime, at zero-magnetic field, we observe a large nonlocal resistance that scales cubically with the local resistivity, which is evidence of pure valley current.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme for detection of the nonlocal resistance due to valley current flow in BLG.
Figure 2: Measured local and nonlocal resistances RL and RNL.
Figure 3: Temperature dependence of ρmax and RNLmax.
Figure 4: Scaling relation between ρ and RNL at CNP.

Similar content being viewed by others

References

  1. Jungwirth, T., Wunderlich, J. & Olejník, K. Spin Hall effect devices. Nature Mater. 11, 382–390 (2012).

    Article  ADS  Google Scholar 

  2. Yao, W., Xiao, D. & Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406 (2008).

    Article  ADS  Google Scholar 

  3. Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Commun. 3, 887 (2012).

    Article  ADS  Google Scholar 

  4. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

    Article  ADS  Google Scholar 

  5. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

    Article  ADS  Google Scholar 

  6. Li, Y. et al. Valley splitting and polarization by the Zeeman effect in monolayer MoSe2 . Phys. Rev. Lett. 113, 266804 (2014).

    Article  ADS  Google Scholar 

  7. MacNeill, D. et al. Breaking of valley degeneracy by magnetic field in monolayer MoSe2 . Phys. Rev. Lett. 114, 037401 (2015).

    Article  ADS  Google Scholar 

  8. Srivastava, A. et al. Valley Zeeman effect in elementary optical excitations of monolayer WSe2 . Nature Phys. 11, 141–147 (2015).

    Article  ADS  Google Scholar 

  9. Aivazian, G. et al. Magnetic control of valley pseudospin in monolayer WSe2 . Nature Phys. 11, 148–152 (2015).

    Article  ADS  Google Scholar 

  10. Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: Magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

    Article  ADS  Google Scholar 

  11. Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    Article  ADS  Google Scholar 

  12. Gorbachev, R. V. et al. Detecting topological currents in graphene superlattices. Science 346, 448–451 (2014).

    Article  ADS  Google Scholar 

  13. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  ADS  Google Scholar 

  14. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  15. Oostinga, J. B., Heersche, H. B., Liu, X., Morpurgo, A. F. & Vandersypen, L. M. K. Gate-induced insulating state in bilayer graphene devices. Nature Mater. 7, 151–157 (2007).

    Article  ADS  Google Scholar 

  16. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    Article  ADS  Google Scholar 

  17. Zou, K. & Zhu, J. Transport in gapped bilayer graphene: The role of potential fluctuations. Phys. Rev. B 82, 081407 (2010).

    Article  ADS  Google Scholar 

  18. Taychatanapat, T. & Jarillo-Herrero, P. Electronic transport in dual-gated bilayer graphene at large displacement fields. Phys. Rev. Lett. 105, 166601 (2010).

    Article  ADS  Google Scholar 

  19. Yan, J. & Fuhrer, M. S. Charge transport in dual gated bilayer graphene with Corbino geometry. Nano Lett. 10, 4521–4525 (2010).

    Article  ADS  Google Scholar 

  20. Koshino, M. Electronic transport in bilayer graphene. New J. Phys. 11, 095010 (2009).

    Article  ADS  Google Scholar 

  21. Zhang, F., Jung, J., Fiete, G. A., Niu, Q. & MacDonald, A. H. Spontaneous quantum Hall states in chirally stacked few-layer graphene systems. Phys. Rev. Lett. 106, 156801 (2011).

    Article  ADS  Google Scholar 

  22. Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 442, 176–179 (2006).

    Article  ADS  Google Scholar 

  23. Abanin, D. A., Shytov, A. V., Levitov, L. S. & Halperin, B. I. Nonlocal charge transport mediated by spin diffusion in the spin Hall effect regime. Phys. Rev. B 79, 035304 (2009).

    Article  ADS  Google Scholar 

  24. Brüne, C. et al. Evidence for the ballistic intrinsic spin Hall effect in HgTe nanostructures. Nature Phys. 6, 448–454 (2010).

    Article  ADS  Google Scholar 

  25. Abanin, D. A. et al. Giant nonlocality near the Dirac point in graphene. Science 332, 328–330 (2011).

    Article  ADS  Google Scholar 

  26. Balakrishnan, J., Koon, G. K. W., Jaiswal, M., Neto, A. H. C. & Özyilmaz, B. Colossal enhancement of spin–orbit coupling in weakly hydrogenated graphene. Nature Phys. 9, 284–287 (2013).

    Article  ADS  Google Scholar 

  27. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    Article  ADS  Google Scholar 

  28. Ohta, T., Bostwick, A., Seyller, T., Horn, K. & Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006).

    Article  ADS  Google Scholar 

  29. Tikhonenko, F. V., Horsell, D. W., Gorbachev, R. V. & Savchenko, A. K. Weak localization in graphene flakes. Phys. Rev. Lett. 100, 056802 (2008).

    Article  ADS  Google Scholar 

  30. Lensky, Y. D., Song, J. C. W., Samutpraphoot, P. & Levitov, L. S. Topological valley currents in gapped Dirac materials. Phys. Rev. Lett. 114, 256601 (2015).

    Article  ADS  Google Scholar 

  31. Li, J., Martin, I., Büttiker, M. & Morpurgo, A. F. Topological origin of subgap conductance in insulating bilayer graphene. Nature Phys. 7, 38–42 (2010).

    Article  ADS  Google Scholar 

  32. Ju, L. et al. Topological valley transport at bilayer graphene domain walls. Nature 520, 650–655 (2015).

    Article  ADS  Google Scholar 

  33. Sui, M. et al. Gate-tunable topological valley transport in bilayer graphene. Nature Phys. http://dx.doi.org/10.1038/nphys3485 (2015).

  34. Taychatanapat, T., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Quantum Hall effect and Landau-level crossing of Dirac fermions in trilayer graphene. Nature Phys. 7, 621–625 (2011).

    Article  ADS  Google Scholar 

  35. Jalilian, R. et al. Scanning gate microscopy on graphene: Charge inhomogeneity and extrinsic doping. Nanotechnology 22, 295705 (2011).

    Article  Google Scholar 

  36. Goossens, A. M. et al. Mechanical cleaning of graphene. Appl. Phys. Lett. 100, 073110 (2012).

    Article  ADS  Google Scholar 

  37. Lindvall, N., Kalabukhov, A. & Yurgens, A. Cleaning graphene using atomic force microscope. J. Appl. Phys. 111, 064904 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge fruitful discussion with L. S. Levitov, J. C. W. Song, M. Koshino, M. Ezawa and N. Nagaosa. Y.S. acknowledges support from Japan Society for the Promotion of Science (JSPS) Research Fellowship for Young Scientists and JSPS Program for Leading Graduate Schools (MERIT). M.Y., K.W. and T.T. acknowledge support from JSPS Grant-in-Aid for Scientific Research on Innovative Areas ‘Science of Atomic Layers’. M.Y. acknowledges support from Canon Foundation. I.V.B. acknowledges support from JSPS International Research Fellowship. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan. T.T. acknowledges support from JSPS Grant-in-Aid for Scientific Research A (No. 26248061) and JSPS Innovative Areas ‘Nano Informatics’ (No. 25106006). S.T. acknowledges support from DFG-JST joint research project ‘Topological Electronics’ and JSPS Grant-in-Aid for Scientific Research S (No. 26220710).

Author information

Authors and Affiliations

Authors

Contributions

Y.S. conceived the experiment, designed the experiment with M.Y., fabricated the samples, conducted measurements and analysis, interpreted the data with M.Y., and wrote the manuscript with M.Y., I.V.B. and S.T. I.V.B. contributed to the measurements. T.T. and K.W. synthesized h-BN samples. M.Y. and S.T. directed the research. All authors discussed the results and the manuscript.

Corresponding authors

Correspondence to M. Yamamoto or S. Tarucha.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimazaki, Y., Yamamoto, M., Borzenets, I. et al. Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene. Nature Phys 11, 1032–1036 (2015). https://doi.org/10.1038/nphys3551

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3551

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing