Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Universality of non-equilibrium fluctuations in strongly correlated quantum liquids

Abstract

Interacting quantum many-body systems constitute a fascinating research field because they form quantum liquids with remarkable properties and universal behaviour1. In fermionic systems, such quantum liquids are realized in helium-3 liquid, heavy fermion systems1, neutron stars and cold gases2. Their properties in the linear-response regime have been successfully described by the theory of Fermi liquids1. The idea is that they behave as an ensemble of non-interacting ‘quasi-particles’. However, non-equilibrium properties have still to be established and remain a key issue of many-body physics. Here, we show a precise experimental demonstration of Landau Fermi liquid theory extended to the non-equilibrium regime in a zero-dimensional system. Combining transport and ultra-sensitive current noise measurements, we have unambiguously identified the SU(2) (ref. 3) and SU(4) (refs 4,5,6,7,8) symmetries of a quantum liquid in a carbon nanotube tuned in the universal Kondo regime. Whereas the free quasi-particle picture is found valid around equilibrium9, an enhancement of the current fluctuations is detected out of equilibrium and perfectly explained by an effective charge induced by the residual interaction between quasi-particles8,10,11,12,13,14,15,16,17. Moreover, an as-yet-unknown scaling law for the effective charge is discovered, suggesting a new non-equilibrium universality. Our method paves a new way to explore the exotic nature of quantum liquids out of equilibrium through their fluctuations in a wide variety of physical systems18.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the interaction effect in the quantum liquid and design of the sample.
Figure 2: Stability diagram and shot noise for the SU(2) Kondo effect at T = 16 mK.
Figure 3: Evolution of Kondo correlations with magnetic field and temperature.
Figure 4: The SU(4) Kondo state and comparison with the SU(2) symmetry.

Similar content being viewed by others

References

  1. Mahan, G. D. Many-Particle Physics (Plenum Press, 1990).

    Book  Google Scholar 

  2. Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nature Phys. 8, 267–276 (2012).

    Article  ADS  Google Scholar 

  3. van der Wiel, W. G. et al. The Kondo effect in the unitary limit. Science 289, 2105–2108 (2000).

    Article  ADS  Google Scholar 

  4. Jarillo-Herrero, P., Kong, J., Zant, H. S. J. V. D. & Dekker, C. Orbital Kondo effect in carbon nanotubes. Nature 434, 484–488 (2005).

    Article  ADS  Google Scholar 

  5. Makarovski, A., Zhukov, A., Liu, J. & Finkelstein, G. SU(2) and SU(4) Kondo effects in carbon nanotube quantum dots. Phys. Rev. B 75, 241407 (2007).

    Article  ADS  Google Scholar 

  6. Cleuziou, J. P., NGuyen, N. G., Florens, S. & Wernsdorfer, W. Interplay of the Kondo effect and strong spin–orbit coupling in multihole ultraclean carbon nanotubes. Phys. Rev. Lett. 111, 136803 (2013).

    Article  ADS  Google Scholar 

  7. Schmid, D. R. et al. Broken SU(4) symmetry in a Kondo-correlated carbon nanotube. Phys. Rev. B 91, 155435 (2015).

    Article  ADS  Google Scholar 

  8. Delattre, T. et al. Noisy Kondo impurities. Nature Phys. 5, 208–212 (2009).

    Article  ADS  Google Scholar 

  9. Nozières, P. A “Fermi-Liquid” description of the Kondo problem at low temperatures. J. Low Temp. Phys. 17, 31–42 (1974).

    Article  ADS  Google Scholar 

  10. Sela, E., Oreg, Y., von Oppen, F. & Koch, J. Fractional shot noise in the Kondo regime. Phys. Rev. Lett. 97, 086601 (2006).

    Article  ADS  Google Scholar 

  11. Oguri, A. Fermi liquid theory for the nonequilibrium Kondo effect at low bias voltages. J. Phys. Soc. Jpn 74, 110–117 (2005).

    Article  ADS  Google Scholar 

  12. Gogolin, A. & Komnik, A. Full counting statistics for the Kondo dot in the unitary limit. Phys. Rev. Lett. 97, 016602 (2006).

    Article  ADS  Google Scholar 

  13. Mora, C., Leyronas, X. & Regnault, N. Current noise through a Kondo quantum dot in a SU(N) Fermi liquid state. Phys. Rev. Lett. 100, 036604 (2008).

    Article  ADS  Google Scholar 

  14. Mora, C., Vitushinsky, P., Leyronas, X., Clerk, A. & Le Hur, K. Theory of nonequilibrium transport in the SU(N) Kondo regime. Phys. Rev. B 80, 155322 (2009).

    Article  ADS  Google Scholar 

  15. Sakano, R., Fujii, T. & Oguri, A. Kondo crossover in shot noise of a single quantum dot with orbital degeneracy. Phys. Rev. B 83, 075440 (2011).

    Article  ADS  Google Scholar 

  16. Zarchin, O., Zaffalon, M., Heiblum, M., Mahalu, D. & Umansky, V. Two-electron bunching in transport through a quantum dot induced by Kondo correlations. Phys. Rev. B 77, 241303 (2008).

    Article  ADS  Google Scholar 

  17. Yamauchi, Y. et al. Evolution of the Kondo effect in a quantum dot probed by shot noise. Phys. Rev. Lett. 106, 176601 (2011).

    Article  ADS  Google Scholar 

  18. Egger, R. What the noise is all about. Nature Phys. 5, 175–176 (2009).

    Article  ADS  Google Scholar 

  19. Kondo, J. Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys. 32, 37–49 (1964).

    Article  ADS  Google Scholar 

  20. Blanter, Y. M. & Büttiker, M. Shot noise in mesoscopic conductors. Phys. Rep. 336, 1–166 (2000).

    Article  ADS  Google Scholar 

  21. Kasumov, Y. et al. CVD growth of carbon nanotubes at very low pressure of acetylene. Appl. Phys. A 88, 687–691 (2007).

    Article  ADS  Google Scholar 

  22. Arakawa, T., Nishihara, Y., Maeda, M., Norimoto, S. & Kobayashi, K. Cryogenic amplifier for shot noise measurement at 20 mK. Appl. Phys. Lett. 103, 172104 (2013).

    Article  ADS  Google Scholar 

  23. Sakano, R., Oguri, A., Kato, T. & Tarucha, S. Full counting statistics for SU(N) impurity Anderson model. Phys. Rev. B 83, 241301 (2011).

    Article  ADS  Google Scholar 

  24. Galpin, M. R., Logan, D. E. & Krishnamurthy, H. R. Quantum phase transition in capacitively coupled double quantum dots. Phys. Rev. Lett. 94, 186406 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We appreciate discussions with H. Bouchiat and R. Yoshii. This work was partially supported by a Grant-in-Aid for Scientific Research (S) (No. 26220711), JSPS KAKENHI (No. 26400319, 25800174 and 15K17680), Invitation Fellowships for Research in Japan from JSPS, Grant-in-Aid for Scientific Research on Innovative Areas ‘Fluctuation & Structure’ (No. 25103003) and ‘Topological Materials Science’ (KAKENHI Grant No. 15H05854), the Program for Promoting the Enhancement of Research Universities from MEXT, and Yazaki Memorial Foundation for Science and Technology, and the French programmes ANR DYMESYS (ANR2011-IS04-001-01) and ANR MASH (ANR-12-BS04-0016). K.K. acknowledges the stimulating discussions in the meeting of the Cooperative Research Project of RIEC, Tohoku University.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the analysis of the data and commented on the manuscript. M.F., R. Delagrange., R.W. and R. Deblock designed the sample. M.F., T.A., T.H. and R.F. performed the noise experiments and analysed the data. M.F. and K.K. planned and supervised the research.

Corresponding authors

Correspondence to Meydi Ferrier or Kensuke Kobayashi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrier, M., Arakawa, T., Hata, T. et al. Universality of non-equilibrium fluctuations in strongly correlated quantum liquids. Nature Phys 12, 230–235 (2016). https://doi.org/10.1038/nphys3556

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3556

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing