Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coherent cyclotron motion beyond Kohn’s theorem

Abstract

In solids, the high density of charged particles makes many-body interactions a pervasive principle governing optics and electronics1,2,3,4,5,6,7,8,9,10,11,12. However, Walter Kohn found in 1961 that the cyclotron resonance of Landau-quantized electrons is independent of the seemingly inescapable Coulomb interaction between electrons2. Although this surprising theorem has been exploited in sophisticated quantum phenomena13,14,15, such as ultrastrong light–matter coupling16, superradiance17 and coherent control18, the complete absence of nonlinearities excludes many intriguing possibilities, such as quantum-logic protocols19. Here, we use intense terahertz pulses to drive the cyclotron response of a two-dimensional electron gas beyond the protective limits of Kohn’s theorem. Anharmonic Landau ladder climbing and distinct terahertz four- and six-wave mixing signatures occur, which our theory links to dynamic Coulomb effects between electrons and the positively charged ion background. This new context for Kohn’s theorem unveils previously inaccessible internal degrees of freedom of Landau electrons, opening up new realms of ultrafast quantum control for electrons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Linear terahertz magnetospectroscopy of a 2DEG Landau system.
Figure 2: Dynamics of Landau system under non-perturbative single-pulse excitation.
Figure 3: Two-dimensional, phase-resolved, collinear terahertz spectroscopy.
Figure 4: Time-domain switch-off analysis of nonlinear contributions.

Similar content being viewed by others

References

  1. Landau, L. Theory of Fermi-liquids. Sov. Phys. JETP 3, 920–925 (1957).

    MathSciNet  MATH  Google Scholar 

  2. Kohn, W. Cyclotron resonance and de Haas–van Alphen oscillations of an interacting electron gas. Phys. Rev. 123, 1242–1244 (1961).

    Article  ADS  Google Scholar 

  3. Kira, M. & Koch, S. W. Semiconductor Quantum Optics (Cambridge Univ. Press, 2011).

    Book  Google Scholar 

  4. Huber, R. et al. How many-particle interactions develop after ultrafast excitation of an electron–hole plasma. Nature 414, 286–289 (2001).

    Article  ADS  Google Scholar 

  5. Chemla, D. S. & Shah, J. Many-body and correlation effects in semiconductors. Nature 411, 549–557 (2001).

    Article  ADS  Google Scholar 

  6. Kaindl, R. A., Carnahan, M. A., Haegele, D., Lovenich, R. & Chemla, D. S. Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas. Nature 423, 734–738 (2003).

    Article  ADS  Google Scholar 

  7. Gaal, P. et al. Internal motions of a quasiparticle governing its ultrafast nonlinear response. Nature 450, 1210–1213 (2007).

    Article  ADS  Google Scholar 

  8. Leinß, S. et al. Terahertz coherent control of optically dark paraexcitons in Cu2O. Phys. Rev. Lett. 101, 246401 (2008).

    Article  ADS  Google Scholar 

  9. Turner, D. B. & Nelson, K. A. Coherent measurements of high-order electronic correlations in quantum wells. Nature 466, 1089–1092 (2010).

    Article  ADS  Google Scholar 

  10. Rice, W. et al. Observation of forbidden exciton transitions mediated by Coulomb interactions in photoexcited semiconductor quantum wells. Phys. Rev. Lett. 110, 137404 (2013).

    Article  ADS  Google Scholar 

  11. Almand-Hunter, A. et al. Quantum droplets of electrons and holes. Nature 506, 471–475 (2014).

    Article  ADS  Google Scholar 

  12. Matsunaga, R. et al. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science 345, 1145–1149 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  13. Noe, G. T. II et al. Giant superfluorescent bursts from a semiconductor magneto-plasma. Nature Phys. 8, 219–224 (2012).

    Article  ADS  Google Scholar 

  14. Wang, X., Belyanin, A. A., Crooker, S. A., Mittleman, D. M. & Kono, J. Interference-induced terahertz transparency in a semiconductor magneto-plasma. Nature Phys. 6, 126–130 (2010).

    Article  ADS  Google Scholar 

  15. Kukushkin, I. V., Smet, J. H., von Klitzing, K. & Wegscheider, W. Cyclotron resonance of composite fermions. Nature 415, 409–412 (2002).

    Article  ADS  Google Scholar 

  16. Scalari, G. et al. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial. Science 335, 1323–1326 (2012).

    Article  ADS  Google Scholar 

  17. Zhang, Q. et al. Superradiant decay of cyclotron resonance of two-dimensional electron gases. Phys. Rev. Lett. 113, 047601 (2014).

    Article  ADS  Google Scholar 

  18. Arikawa, T. et al. Quantum control of a Landau-quantized two-dimensional electron gas in a GaAs quantum well using coherent terahertz pulses. Phys. Rev. B 84, 241307(R) (2011).

    Article  ADS  Google Scholar 

  19. Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    Article  ADS  Google Scholar 

  20. Wieman, C. E., Pritchard, D. E. & Wineland, D. J. Atom cooling, trapping, and quantum manipulation. Rev. Mod. Phys. 71, S253 (1999).

    Article  Google Scholar 

  21. Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

    Article  ADS  Google Scholar 

  22. Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nature Photon. 5, 31–34 (2011).

    Article  ADS  Google Scholar 

  23. Kampfrath, T., Tanaka, K. & Nelson, K. A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nature Photon. 7, 680–690 (2013).

    Article  ADS  Google Scholar 

  24. Hu, C. M., Batke, E., Köhler, K. & Ganser, P. Interaction coupled cyclotron transitions of two-dimensional electron systems in GaAs at high temperatures. Phys. Rev. Lett. 75, 918–921 (1995).

    Article  ADS  Google Scholar 

  25. Hu, C. M., Batke, E., Köhler, K. & Ganser, P. Resonant polaron coupling of high index electron Landau levels in GaAs heterostructures. Phys. Rev. Lett. 76, 1904–1907 (1996).

    Article  ADS  Google Scholar 

  26. Mittendorf, M. et al. Carrier dynamics in Landau-quantized graphene featuring strong Auger scattering. Nature Phys. 11, 75–81 (2015).

    Article  ADS  Google Scholar 

  27. Al-Jibbouri, H. & Pelster, A. Breakdown of the Kohn theorem near a Feshbach resonance in a magnetic trap. Phys. Rev. A 88, 033621 (2013).

    Article  ADS  Google Scholar 

  28. Ghosal, A., Güclü, A. D., Umrigar, C. J., Ullmo, D. & Baranger, H. U. Correlation-induced inhomogeneity in circular quantum dots. Nature. Phys. 2, 336–340 (2006).

    Article  ADS  Google Scholar 

  29. Kira, M. & Koch, S. W. Many-body correlations and excitonic effects in semiconductor spectroscopy. Prog. Quantum Electron. 30, 155–296 (2006).

    Article  ADS  Google Scholar 

  30. Smith, R. P. et al. Extraction of many-body configurations from nonlinear absorption in semiconductor quantum wells. Phys. Rev. Lett. 104, 247401 (2010).

    Article  ADS  Google Scholar 

  31. Kuehn, W., Reimann, K., Woerner, M. & Elsaesser, T. Phase-resolved two-dimensional spectroscopy based on collinear n-wave mixing in the ultrafast time domain. J. Chem. Phys. 130, 164503 (2009).

    Article  ADS  Google Scholar 

  32. Junginger, F. et al. Nonperturbative interband response of a bulk InSb semiconductor driven off resonantly by terahertz electromagnetic few-cycle pulses. Phys. Rev. Lett. 109, 147403 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work in Regensburg was supported by the European Research Council through grant no. 305003 (QUANTUMsubCYCLE) and the Deutsche Forschungsgemeinschaft (LA 3307/1-1, HU 1598/2-1, BO 3140/3-1, and Collaborative Research Center SFB 689). The work at the University of Marburg was supported by the Deutsche Forschungsgemeinschaft through SFB 1083 and grant KI 917/2-2 (M.K.), and the Alexander von Humboldt foundation (J.E.S.).

Author information

Authors and Affiliations

Contributions

T.M., A.B., M.M. and C.L. contributed equally to this work. C.L., T.M., M.K., S.W.K. and R.H. conceived the study. T.M., C.L., A.B., S.B., M.H., T.K., C.S., D.B. and R.H. carried out the experiment and analysed the data. A.B., D.S. and D.B. prepared the sample. M.M., J.E.S., S.W.K. and M.K. developed the quantum-mechanical model and carried out the computations. C.L., T.M., M.M., S.W.K., M.K. and R.H. wrote the manuscript. All authors discussed the results.

Corresponding author

Correspondence to C. Lange.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5743 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maag, T., Bayer, A., Baierl, S. et al. Coherent cyclotron motion beyond Kohn’s theorem. Nature Phys 12, 119–123 (2016). https://doi.org/10.1038/nphys3559

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3559

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing