Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Field-induced quantum metal–insulator transition in the pyrochlore iridate Nd2Ir2O7

Abstract

The metal–insulator transition (MIT) is a hallmark of strong correlation in solids1,2,3. Quantum MITs at zero temperature have been observed in various systems tuned by either carrier doping or bandwidth1. However, such transitions have rarely been induced by application of magnetic field, as normally the field scale is too small in comparison with the charge gap, whose size is a fraction of the Coulomb repulsion energy (1 eV). Here we report the discovery of a quantum MIT tuned by a field of 10 T, whose magnetoresistance exceeds 60,000%. In particular, our anisotropic magnetotransport measurements on the cubic insulator Nd2Ir2O7 (ref. 4) reveal that the insulating state can be suppressed by such a field to a zero-temperature quantum MIT, but only for fields near the [001] axis. The strong sensitivity to the field direction is remarkable for a cubic crystal, as is the fact that the MIT can be driven by such a small magnetic field, given the 45 meV gap energy5, which is of order of 50 times the Zeeman energy for an Ir4+ spin. The systematic change in the MIT from continuous near zero field to first order under fields indicates the existence of a tricritical point proximate to the quantum MIT. We argue that these phenomena imply both strong correlation effects on the Ir electrons and an active role for the Nd spins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermal metal–insulator transition (MIT) in a Nd2Ir2O7 single crystal.
Figure 2: Field-induced metal–insulator transition (MIT) of Nd2Ir2O7 observed using the pulsed magnetic field.
Figure 3: Field-induced magnetic transition in Nd2Ir2O7.
Figure 4: AIAO order and charge gap enhanced by Kondo coupling.

Similar content being viewed by others

References

  1. Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transition. Rev. Mod. Phys. 70, 1039–1263 (1998).

    Article  ADS  Google Scholar 

  2. Kuwahara, H., Tomioka, Y., Asamitsu, A., Moritomo, Y. & Tokura, Y. A first-order phase transition induced by a magnetic field. Science 270, 961–963 (1995).

    Article  ADS  Google Scholar 

  3. Ramirez, A. P. Colossal magnetoresistance. J. Phys. Condens. Matter 9, 8171–8199 (2000).

    Article  ADS  Google Scholar 

  4. Matsuhira, K., Wakeshima, M., Hinatsu, Y. & Takagi, S. Metal–insulator transition in pyrochlore oxides Ln2Ir2O7 . J. Phys. Soc. Jpn 80, 094701 (2011).

    Article  ADS  Google Scholar 

  5. Ueda, K. et al. Variation of charge dynamics in the course of metal–insulator transition for pyrochlore-type Nd2Ir2O7 . Phys. Rev. Lett. 109, 136402 (2012).

    Article  ADS  Google Scholar 

  6. Nakatsuji, S. et al. Metalic Spin-liquid behavior of the geometrically frustrated Kondo lattice Pr2Ir2O7 . Phys. Rev. Lett. 96, 087204 (2006).

    Article  ADS  Google Scholar 

  7. Machida, Y., Nakatsuj, S., Onoda, S., Tayama, T. & Sakakibara, T. Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order. Nature 463, 210–213 (2010).

    Article  ADS  Google Scholar 

  8. Tokiwa, Y., Ishikawa, J. J., Nakatsuji, S. & Gegenwart, P. Quantum criticality in a metallic spin liquid. Nature Mater. 13, 356–359 (2014).

    Article  ADS  Google Scholar 

  9. Sagayama, H. et al. Determination of long-range all-in-all-out ordering of Ir4+ moments in a pyrochlore iridate Eu2Ir2O7 by resonant X-ray diffraction. Phys. Rev. B 87, 100403 (2013).

    Article  ADS  Google Scholar 

  10. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205201 (2011).

    Article  ADS  Google Scholar 

  11. Pesin, D. & Balents, L. Mott physics and band topology in materials with strong spin–orbit interaction. Nature Phys. 6, 376–381 (2010).

    Article  ADS  Google Scholar 

  12. Witczak-Krempa, W. & Kim, Y. B. Topological and magnetic phases of interacting electrons in the pyrochlore iridates. Phys. Rev. B 85, 045124 (2012).

    Article  ADS  Google Scholar 

  13. Yang, B. J. & Nagaosa, N. Emergent topological phenomena in thin films of pyrochlore iridates. Phys. Rev. Lett. 112, 246402 (2014).

    Article  ADS  Google Scholar 

  14. Witczak-Krempa, W., Go, A. & Kim, Y. B. Pyrochlore electrons under pressure, heat, and field: Shedding light on the iridates. Phys. Rev. B 87, 155101 (2013).

    Article  ADS  Google Scholar 

  15. Tomiyasu, K. et al. Emergence of magnetic long-range order in frustrated pyrochlore Nd2Ir2O7 with metal–insulator transition. J. Phys. Soc. Jpn 81, 034709 (2012).

    Article  ADS  Google Scholar 

  16. Witczak-Krempa, W., Chen, G., Kim, Y. B. & Balents, L. Correlated quantum phenomena in the strong spin–orbit regime. Annu. Rev. Condens. Matter Phys. 5, 57–82 (2014).

    Article  ADS  Google Scholar 

  17. Shapiro, M. C. et al. Structure and magnetic properties of the pyrochlore iridate Y2Ir2O7 . Phys. Rev B 85, 214434 (2012).

    Article  ADS  Google Scholar 

  18. Sakakibara, T., Tayama, T., Hiroi, Z., Matsuhira, K. & Takagi, S. Observation of a Liquid-gas-type transition in the pyrochlore spin ice compound Dy2Ti2O7 in a magnetic field. Phys. Rev. Lett. 90, 207205 (2003).

    Article  ADS  Google Scholar 

  19. Kondo, T. et al. Quadratic Fermi Node in a 3D strongly correlated semimetal. Preprint at http://arXiv.org/abs/1510.07977 (2015).

  20. Zhang, H., Haule, K. & Vanderbilt, D. Metal–insulator transition and topological properties of pyrochlore iridates. Preprint at http://arXiv.org/abs/1505.01203 (2015).

  21. Shinaoka, H., Shintaro, H., Troyer, M. & Werner, P. Phase diagram of pyrochlore iridates: All-in/all-out magnetic ordering and non-Fermi liquid properties. Phys. Rev. Lett. 115, 156401 (2015).

    Article  ADS  Google Scholar 

  22. Savary, L., Moon, E. G. & Balents, L. New Type of quantum criticality in the pyrochlore iridates. Phys. Rev X 4, 041027 (2014).

    Google Scholar 

  23. Arima, T. Time-Reversal symmetry breaking and consequent physical responses induced by all-in-all-out type magnetic order on the pyrochlore lattice. J. Phys. Soc. Jpn 82, 013705 (2013).

    Article  ADS  Google Scholar 

  24. Yamaji, Y. & Imada, M. Metallic interface emerging at magnetic domain wall of antiferromagnetic insulator: Fate of extinct Weyl electrons. Phys. Rev. X 4, 021035 (2014).

    Google Scholar 

  25. Brando, M., Belitz, D., Grosche, F. M. & Kirkpatrick, T. R. Metallic quantum ferromagnets. Preprint at http://arXiv.org/abs/1502.02898 (2015).

  26. Ueda, K. et al. Magnetic field-induced Insulator-semimetal transition in a pyrochlore Nd2Ir2O7 . Phys. Rev. Lett. 115, 056402 (2015).

    Article  ADS  Google Scholar 

  27. Millican, J. N. et al. Crystal growth and structure of R2Ir2O7 (R = Pr, Eu) using molten KF. Mater. Res. Bull. 42, 928–934 (2007).

    Article  Google Scholar 

  28. Ishikawa, J. J., O’Farrell, E. C. T. & Nakatsuji, S. Continuous transition between antiferromagnetic insulator and paramagnetic metal in the pyrochlore iridate Eu2Ir2O7 . Phys. Rev. B 85, 245109 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Matsuo for technical assistance, and K. Behnia and A. Nevidomskyy for useful discussions. This work has been supported in part by Grants-in-Aid for Scientific Research (No. 25707030), Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers (No. R2604) from the Japanese Society for the Promotion of Science and PRESTO of JST, and Grant-in-Aid for Scientific Research on Innovative Areas (15H05882, 15H05883). L.B. was supported by the DOE Office of Basic Energy Sciences, DE-FG02-08ER46524. H.I. was supported by JSPS Postdoctoral Fellowships for Research Abroad. T.H.H. was supported by a KITP Graduate Fellowship and DOE Office of Basic Energy Sciences, DE-SC0010526.

Author information

Authors and Affiliations

Authors

Contributions

S.N. planned the experimental project. Z.T., J.J.I. and S.N. prepared single crystals. Z.T., Y.K., T.T. and K.K. performed high-field measurements. L.B. planned the theoretical project. H.I., T.H.H. and L.B. performed theoretical calculations. Z.T., T.T., L.B. and S.N. wrote the paper. T.H.H. and H.I. wrote the theory in the Supplementary Information. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Leon Balents or Satoru Nakatsuji.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2665 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Z., Kohama, Y., Tomita, T. et al. Field-induced quantum metal–insulator transition in the pyrochlore iridate Nd2Ir2O7. Nature Phys 12, 134–138 (2016). https://doi.org/10.1038/nphys3567

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3567

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing