Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nature of the quantum metal in a two-dimensional crystalline superconductor

Abstract

Two-dimensional (2D) materials are not expected to be metals at low temperature owing to electron localization1. Consistent with this, pioneering studies on thin films reported only superconducting and insulating ground states, with a direct transition between the two as a function of disorder or magnetic field2,3,4,5,6. However, more recent works have revealed the presence of an intermediate quantum metallic state occupying a substantial region of the phase diagram7,8,9,10, whose nature is intensely debated11,12,13,14,15,16,17. Here, we observe such a state in the disorder-free limit of a crystalline 2D superconductor, produced by mechanical co-lamination of NbSe2 in an inert atmosphere. Under a small perpendicular magnetic field, we induce a transition from superconductor to the quantum metal. We find a unique power-law scaling with field in this phase, which is consistent with the Bose-metal model where metallic behaviour arises from strong phase fluctuations caused by the magnetic field11,12,13,14.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Environmentally controlled device fabrication.
Figure 2: Characterization of bilayer NbSe2 device.
Figure 3: Magnetic-field-tuned phase transitions in 2D NbSe2.
Figure 4: Emergence of the quantum metal.

Similar content being viewed by others

References

  1. Abrahams, E., Anderson, P. W., Licciardello, D. C. & Ramakrishnan, T. V. Scaling theory of localization: Absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673–676 (1979).

    Article  ADS  Google Scholar 

  2. Goldman, A. M. & Markovic, N. Superconductor–insulator transitions in the two-dimensional limit. Phys. Today 51, 39–44 (1998).

    Article  Google Scholar 

  3. Haviland, D. B., Liu, Y. & Goldman, A. M. Onset of superconductivity in the two-dimensional limit. Phys. Rev. Lett. 62, 2180–2183 (1989).

    Article  ADS  Google Scholar 

  4. Fisher, M. P. A. Quantum phase transitions in disordered two-dimensional superconductors. Phys. Rev. Lett. 65, 923–926 (1990).

    Article  ADS  Google Scholar 

  5. Hebard, A. F. & Paalanen, M. A. Magnetic-field-tuned superconductor–insulator transition in two-dimensional films. Phys. Rev. Lett. 65, 927–930 (1990).

    Article  ADS  Google Scholar 

  6. Yazdani, A. & Kapitulnik, A. Superconducting–insulating transition in two-dimensional α-MoGe thin films. Phys. Rev. Lett. 74, 3037–3040 (1995).

    Article  ADS  Google Scholar 

  7. Ephron, D., Yazdani, A., Kapitulnik, A. & Beasley, M. R. Observation of quantum dissipation in the vortex state of a highly disordered superconducting thin film. Phys. Rev. Lett. 76, 1529–1532 (1996).

    Article  ADS  Google Scholar 

  8. Christiansen, C., Hernandez, L. M. & Goldman, A. M. Evidence of collective charge behavior in the insulating state of ultrathin films of superconducting metals. Phys. Rev. Lett. 88, 037004 (2002).

    Article  ADS  Google Scholar 

  9. Qin, Y. G., Vicente, C. L. & Yoon, J. Magnetically induced metallic phase in superconducting tantalum films. Phys. Rev. B 73, 100505 (2006).

    Article  ADS  Google Scholar 

  10. Steiner, M. A., Breznay, N. P. & Kapitulnik, A. Approach to a superconductor-to-Bose-insulator transition in disordered films. Phys. Rev. B 77, 212501 (2008).

    Article  ADS  Google Scholar 

  11. Das, D. & Doniach, S. Existence of a Bose metal at T = 0. Phys. Rev. B 60, 1261–1275 (1999).

    Article  ADS  Google Scholar 

  12. Das, D. & Doniach, S. Bose metal: Gauge-field fluctuations and scaling for field-tuned quantum phase transitions. Phys. Rev. B 64, 134511 (2001).

    Article  ADS  Google Scholar 

  13. Dalidovich, D. & Phillips, P. Phase glass is a Bose metal: A new conducting state in two dimensions. Phys. Rev. Lett. 89, 027001 (2002).

    Article  ADS  Google Scholar 

  14. Phillips, P. & Dalidovich, D. The elusive Bose metal. Science 302, 243–247 (2003).

    Article  ADS  Google Scholar 

  15. Shimshoni, E., Auerbach, A. & Kapitulnik, A. Transport through quantum melts. Phys. Rev. Lett. 80, 3352–3355 (1998).

    Article  ADS  Google Scholar 

  16. Spivak, B., Zyuzin, A. & Hruska, M. Quantum superconductor–metal transition. Phys. Rev. B 64, 132502 (2001).

    Article  ADS  Google Scholar 

  17. Galitski, V. M., Refael, G., Fisher, M. P. A. & Senthil, T. Vortices and quasiparticles near the superconductor–insulator transition in thin films. Phys. Rev. Lett. 95, 077002 (2005).

    Article  ADS  Google Scholar 

  18. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  ADS  Google Scholar 

  19. Le, L. P. et al. Magnetic penetration depth in layered compound NbSe2 measured by muon spin relaxation. Physica C 185, 2715–2716 (1991).

    Article  ADS  Google Scholar 

  20. Soto, F. et al. Electric and magnetic characterization of NbSe2 single crystals: Anisotropic superconducting fluctuations above Tc . Physica C 460, 789–790 (2007).

    Article  ADS  Google Scholar 

  21. Staley, N. E. et al. Electric field effect on superconductivity in atomically thin flakes of NbSe2 . Phys. Rev. B 80, 184505 (2009).

    Article  ADS  Google Scholar 

  22. El-Bana, M. S. et al. Superconductivity in two-dimensional NbSe2 field effect transistors. Supercond. Sci. Technol. 26, 125020 (2013).

    Article  ADS  Google Scholar 

  23. Tsen, A. W. et al. Structure and control of charge density waves in two-dimensional 1T-TaS2 . Proc. Natl Acad. Sci. USA http://dx.doi.org/10.1073/pnas.1512092112 (in the press).

  24. Cao, Y. et al. Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett. 15, 4914–4921 (2015).

    Article  ADS  Google Scholar 

  25. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  ADS  Google Scholar 

  26. Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nature Nanotech. 10, 534–540 (2015).

    Article  ADS  Google Scholar 

  27. Tinkham, M. Introduction to Superconductivity 2nd edn (Dover, 1996).

    Google Scholar 

  28. Kim, M., Kozuka, Y., Bell, C., Hikita, Y. & Hwang, H. Y. Intrinsic spin–orbit coupling in superconducting δ-doped SrTiO3 heterostructures. Phys. Rev. B 86, 085121 (2012).

    Article  ADS  Google Scholar 

  29. Halperin, B. I. & Nelson, D. R. Resistive transition in superconducting films. J. Low Temp. Phys. 36, 599–616 (1979).

    Article  ADS  Google Scholar 

  30. Eley, S., Gopalakrishnan, S., Goldbart, P. M. & Mason, N. Approaching zero-temperature metallic states in mesoscopic superconductor–normal-superconductor arrays. Nature Phys. 8, 59–62 (2012).

    Article  ADS  Google Scholar 

  31. Beasley, M. R., Mooij, J. E. & Orlando, T. P. Possibility of vortex–antivortex pair dissociation in two-dimensional superconductors. Phys. Rev. Lett. 42, 1165–1168 (1979).

    Article  ADS  Google Scholar 

  32. Feigelman, M. V., Geshkenbein, V. B. & Larkin, A. I. Pinning and creep in layered superconductors. Physica C 167, 177–187 (1990).

    Article  ADS  Google Scholar 

  33. Mason, N. & Kapitulnik, A. True superconductivity in a two-dimensional superconducting–insulating system. Phys. Rev. B 64, 060504 (2001).

    Article  ADS  Google Scholar 

  34. Li, Y., Vicente, C. L. & Yoon, J. Transport phase diagram for superconducting thin films of tantalum with homogeneous disorder. Phys. Rev. B 81, 020505 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge helpful discussions with Z. Han, J.-D. Pillet, E. Shimsoni, O. Vafek, A. Kapitulnik, D. Xiao and D. Gopalan. We thank J. Shi, F. Zhao, D. Wang and S. Chen for assistance with device fabrication. This material is based on work supported by the NSF MRSEC Program through Columbia in the Center for Precision Assembly of Superstratic and Superatomic Solids (DMR-1420634). Salary support is provided by the NSF under grants NEB- 1124894 (A.W.T.) and DMR-1056527 (A.N.P.). Some measurements were performed at the National High Magnetic Field Laboratory, which is supported by the NSF Cooperative Agreement (DMR-0654118), the State of Florida and the Department of Energy. S.J. is supported by the National Basic Research Program of China (grants 2013CB921901 and 2014CB239302). R.J.C. is supported by the Department of Energy, Division of Basic Energy Sciences (grant DOE FG02-98ER45706). P.K. acknowledges support from the Army Research Office (grant W911NF-14-1-0638).

Author information

Authors and Affiliations

Contributions

A.W.T., B.H., C.R.D. and A.N.P. conceived and designed the experiment; Z.J.Y. and S.J. synthesized the NbSe2 crystals; A.W.T. fabricated the devices with assistance from Y.D.K.; A.W.T. and B.H. performed the transport measurements; A.W.T., B.H., C.R.D. and A.N.P. analysed the data and wrote the paper. R.J.C., J.H., P.K., C.R.D. and A.N.P. advised.

Corresponding authors

Correspondence to C. R. Dean or A. N. Pasupathy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 407 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsen, A., Hunt, B., Kim, Y. et al. Nature of the quantum metal in a two-dimensional crystalline superconductor. Nature Phys 12, 208–212 (2016). https://doi.org/10.1038/nphys3579

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3579

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing