Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene

Abstract

Graphene-based Josephson junctions provide a novel platform for studying the proximity effect1,2,3 due to graphene’s unique electronic spectrum and the possibility to tune junction properties by gate voltage4,5,6,7,8,9,10,11,12,13,14,15,16. Here we describe graphene junctions with a mean free path of several micrometres, low contact resistance and large supercurrents. Such devices exhibit pronounced Fabry–Pérot oscillations not only in the normal-state resistance but also in the critical current. The proximity effect is mostly suppressed in magnetic fields below 10 mT, showing the conventional Fraunhofer pattern. Unexpectedly, some proximity survives even in fields higher than 1 T. Superconducting states randomly appear and disappear as a function of field and carrier concentration, and each of them exhibits a supercurrent carrying capacity close to the universal quantum limit17,18. We attribute the high-field Josephson effect to mesoscopic Andreev states that persist near graphene edges. Our work reveals new proximity regimes that can be controlled by quantum confinement and cyclotron motion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ballistic SGS junctions.
Figure 2: Quantum oscillations in the supercurrent.
Figure 3: Fluctuating proximity superconductivity.

Similar content being viewed by others

References

  1. Meissner, H. Range of order of superconducting electrons. Phys. Rev. Lett. 2, 458–459 (1959).

    Article  ADS  Google Scholar 

  2. Tinkham, M. Introduction to Superconductivity (Courier Dover, 2012).

    Google Scholar 

  3. Beenakker, C. W. J. Colloquium: Andreev reflection and Klein tunneling in graphene. Rev. Mod. Phys. 80, 1337–1354 (2008).

    Article  ADS  Google Scholar 

  4. Heersche, H. B., Jarillo-Herrero, P., Oostinga, J. B., Vandersypen, L. M. K. & Morpurgo, A. F. Bipolar supercurrent in graphene. Nature 446, 56–59 (2007).

    Article  ADS  Google Scholar 

  5. Miao, F. et al. Phase-coherent transport in graphene quantum billiards. Science 317, 1530–1533 (2007).

    Article  ADS  Google Scholar 

  6. Du, X., Skachko, I. & Andrei, E. Josephson current and multiple Andreev reflections in graphene SNS junctions. Phys. Rev. B 77, 184507 (2008).

    Article  ADS  Google Scholar 

  7. Ojeda-Aristizabal, C., Ferrier, M., Guéron, S. & Bouchiat, H. Tuning the proximity effect in a superconductor–graphene–superconductor junction. Phys. Rev. B 79, 165436 (2009).

    Article  ADS  Google Scholar 

  8. Girit, C. et al. Tunable graphene dc superconducting quantum interference device. Nano Lett. 9, 198–199 (2009).

    Article  ADS  Google Scholar 

  9. Borzenets, I. V., Coskun, U. C., Jones, S. J. & Finkelstein, G. Phase diffusion in graphene-based Josephson junctions. Phys. Rev. Lett. 107, 137005 (2011).

    Article  ADS  Google Scholar 

  10. Komatsu, K., Li, C., Autier-Laurent, S., Bouchiat, H. & Gueron, S. Superconducting proximity effect through graphene from zero field to the quantum Hall regime. Phys. Rev. B 86, 115412 (2012).

    Article  ADS  Google Scholar 

  11. Coskun, U. C. et al. Distribution of supercurrent switching in graphene under proximity effect. Phys. Rev. Lett. 108, 097003 (2012).

    Article  ADS  Google Scholar 

  12. Mizuno, N., Nielsen, B. & Du, X. Ballistic-like supercurrent in suspended graphene Josephson weak links. Nature Commun. 4, 3716 (2013).

    Article  Google Scholar 

  13. Choi, J. H. et al. Complete gate control of supercurrent in graphene pn junctions. Nature Commun. 4, 3525 (2013).

    Google Scholar 

  14. Deon, F., Šopić, S. & Morpurgo, A. F. Tuning the influence of microscopic decoherence on the superconducting proximity effect in a graphene Andreev interferometer. Phys. Rev. Lett. 112, 126803 (2014).

    Article  ADS  Google Scholar 

  15. Calado, V. E. et al. Ballistic Josephson junctions in edge-contacted graphene. Nature Nanotech. 10, 761–764 (2015).

    Article  ADS  Google Scholar 

  16. Allen, M. T. et al. Spatially resolved edge currents and guided-wave electronic states in graphene. Nature Phys, http://dx.doi.org/10.1038/nphys3534 (2015).

  17. Beenakker, C. W. J. Universal limit of critical-current fluctuations in mesoscopic Josephson junctions. Phys. Rev. Lett. 67, 3836–3839 (1991).

    Article  ADS  Google Scholar 

  18. Altshuler, B. L. & Spivak, B. Z. Mesoscopic fluctuations in a superconductor-normal metal-superconductor junction. Sov. Phys. JETP 65, 343–347 (1987).

    Google Scholar 

  19. Mayorov, A. S. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396–2399 (2011).

    Article  ADS  Google Scholar 

  20. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  ADS  Google Scholar 

  21. Krylov, I. P. & Sharvin, Y. V. Radio-frequency size effect in a layer of normal metal bounded by its superconducting phase. Sov. Phys. JETP 37, 481–486 (1973).

    ADS  Google Scholar 

  22. Blake, P. et al. Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point. Solid State Commun. 149, 1068–1071 (2009).

    Article  ADS  Google Scholar 

  23. Rickhaus, P. et al. Ballistic interferences in suspended graphene. Nature Commun. 4, 2342 (2013).

    Article  ADS  Google Scholar 

  24. Dubos, P. et al. Josephson critical current in a long mesoscopic SNS junction. Phys. Rev. B 63, 064502 (2001).

    Article  ADS  Google Scholar 

  25. Ishii, C. Josephson currents through junctions with normal metal barriers. Prog. Theor. Phys. 44, 1525–1547 (1970).

    Article  ADS  Google Scholar 

  26. Andreev, A. F. The thermal conductivity of the intermediate state in superconductors. Sov. Phys. JETP 19, 1228–1231 (1964).

    Google Scholar 

  27. Klapwijk, T. M. Proximity effect from an Andreev perspective. J. Supercond. 17, 593–611 (2004).

    Article  ADS  Google Scholar 

  28. Jalabert, R. A., Baranger, H. U. & Stone, A. D. Conductance fluctuations in the ballistic regime: A probe of quantum chaos? Phys. Rev. Lett. 65, 2442–2445 (1990).

    Article  ADS  Google Scholar 

  29. Takayanagi, H., Hansen, J. B. & Nitta, J. Mesoscopic fluctuations of the critical current in a superconductor–normal-conductor–superconductor. Phys. Rev. Lett. 74, 166–169 (1995).

    Article  ADS  Google Scholar 

  30. Heida, J. P., van Wees, B. J., Klapwijk, T. M. & Borghs, G. Nonlocal supercurrent in mesoscopic Josephson junctions. Phys. Rev. B 57, 5618–5621 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council, the EU Graphene Flagship Program, the Royal Society, the Air Force Office of Scientific Research, the Office of Naval Research and ERC Synergy Grant Hetero2D. We thank C. Barton, G. H. Auton, R. V. Gorbachev and F. Guinea for helpful discussions. M.J.Z. acknowledges the National University of Defense Technology (China) overseas PhD scholarship. J.R.P. acknowledges support of the Marie Curie People Program.

Author information

Authors and Affiliations

Authors

Contributions

A.K.G., A.V.K. and M.B.S. designed the experiment. M.B.S. and A.V.K. fabricated the devices. M.J.Z. and J.R.P. carried out the measurements. M.B.S., M.J.Z., V.I.F., A.K.G. and J.R.P. analysed and interpreted the data. V.I.F. provided theory support. K.W. and T.T. supplied hBN crystals A.M. and C.R.W. helped with experiments. M.B.S., J.R.P., V.I.F. and A.K.G. wrote the manuscript with input from all the authors.

Corresponding authors

Correspondence to V. I. Fal’ko or A. K. Geim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 30125 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Shalom, M., Zhu, M., Fal’ko, V. et al. Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene. Nature Phys 12, 318–322 (2016). https://doi.org/10.1038/nphys3592

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3592

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing