Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct observation of spin–orbit coupling in iron-based superconductors

Abstract

Spin–orbit coupling is a fundamental interaction in solids that can induce a broad range of unusual physical properties, from topologically non-trivial insulating states to unconventional pairing in superconductors1,2,3,4,5,6,7. In iron-based superconductors its role has, so far, not been considered of primary importance, with models based on spin- or orbital fluctuations pairing being used most widely8,9,10. Using angle-resolved photoemission spectroscopy, we directly observe a sizeable spin–orbit splitting in all the main members of the iron-based superconductors. We demonstrate that its impact on the low-energy electronic structure and details of the Fermi surface topology is stronger than that of possible nematic ordering11,12,13. The largest pairing gap is supported exactly by spin–orbit-coupling-induced Fermi surfaces, implying a direct relation between this interaction and the mechanism of high-temperature superconductivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Band-structure calculations of IBS with and without SOC.
Figure 2: Determination of spin–orbit splitting at Γ-point in LiFeAs.
Figure 3: Spin–orbit versus nematic splittings on electron-like pockets in LiFeAs.
Figure 4: Spin–orbit coupling in 11, 122 and 1111 iron-based superconductors.
Figure 5: Spin–orbit coupling and gap functions in iron-based superconductors.

Similar content being viewed by others

References

  1. Jungwirth, T., Wunderlich, J. & Olejnik, K. Spin Hall effect devices. Nature Mater. 11, 382–390 (2012).

    Article  ADS  Google Scholar 

  2. Hasan, M. Z. & Kane, C. L. Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  Google Scholar 

  3. Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    Article  ADS  Google Scholar 

  4. Caviglia, A. D. et al. Tunable Rashba spin–orbit interaction at oxide interfaces. Phys. Rev. Lett. 104, 126803 (2010).

    Article  ADS  Google Scholar 

  5. Dikin, D. A. et al. Coexistence of superconductivity and ferromagnetism in two dimensions. Phys. Rev. Lett. 107, 056802 (2011).

    Article  ADS  Google Scholar 

  6. Gardner, H. J. et al. Enhancement of superconductivity by a parallel magnetic field in two-dimensional superconductors. Nature Phys. 7, 895–900 (2011).

    Article  ADS  Google Scholar 

  7. Haverkort, M. W. et al. Strong spin–orbit coupling effects on the Fermi surface of Sr2RuO4 and Sr2RhO4 . Phys. Rev. Lett. 101, 026406 (2008).

    Article  ADS  Google Scholar 

  8. Kuroki, K. et al. Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1−xFx . Phys. Rev. Lett. 101, 087004 (2008).

    Article  ADS  Google Scholar 

  9. Hirschfeld, P., Korshunov, M. & Mazin, I. Gap symmetry and structure of Fe-based superconductors. Rep. Prog. Phys. 74, 124508 (2011).

    Article  ADS  Google Scholar 

  10. Kontani, H. & Onari, S. Orbital-fluctuation-mediated superconductivity in iron pnictides: Analysis of the five-orbital Hubbard–Holstein model. Phys. Rev. Lett. 104, 157001 (2010).

    Article  ADS  Google Scholar 

  11. Nakayama, K. et al. Reconstruction of band structure induced by electronic nematicity in an FeSe superconductor. Phys. Rev. Lett. 113, 237001 (2014).

    Article  ADS  Google Scholar 

  12. Shimojima, T. et al. Lifting of xz/yz orbital degeneracy at the structural transition in detwinned FeSe. Phys. Rev. B 90, 121111 (2014).

    Article  ADS  Google Scholar 

  13. Watson, M. D. et al. Emergence of the nematic electronic state in FeSe. Phys. Rev. B 91, 155106 (2015).

    Article  ADS  Google Scholar 

  14. Maletz, J. et al. Photoemission and muon spin relaxation spectroscopy of the iron-based Rb0.77Fe1.61Se2 superconductor: Crucial role of the cigar-shaped Fermi surface. Phys. Rev. B 88, 134501 (2013).

    Article  ADS  Google Scholar 

  15. Thirupathaiah, S. et al. Why T c of (CaFeAs)10Pt3.58As8 is twice as high as (CaFe0.95Pt0.05As)10Pt3As8 . Phys. Rev. B 88, 140505 (2013).

    Article  ADS  Google Scholar 

  16. Maletz, J. et al. Unusual band renormalization in the simplest iron-based superconductor FeSe1−x . Phys. Rev. B 89, 220506(R) (2014).

    Article  ADS  Google Scholar 

  17. Charnukha, A. et al. Interaction-induced singular Fermi surface in a high-temperature oxypnictide superconductor. Sci. Rep. 5, 10392 (2015).

    Article  ADS  Google Scholar 

  18. Innocenti, D. et al. Shape resonance for the anisotropic superconducting gaps near a Lifshitz transition: The effect of electron hopping between layers. Supercond. Sci. Technol. 24, 015012 (2011).

    Article  ADS  Google Scholar 

  19. Innocenti, D. et al. Resonant and crossover phenomena in a multiband superconductor: Tuning the chemical potential near a band edge. Phys. Rev. B 82, 184528 (2010).

    Article  ADS  Google Scholar 

  20. Bianconi, A. Quantum materials: Shape resonances in superstripes. Nature Phys. 9, 536–537 (2013).

    Article  ADS  Google Scholar 

  21. Borisenko, S. V. et al. Superconductivity without nesting in LiFeAs. Phys. Rev. Lett. 105, 067002 (2010).

    Article  ADS  Google Scholar 

  22. Borisenko, S. V. et al. One-sign order parameter in iron based superconductor. Symmetry 4, 251–264 (2012).

    Article  Google Scholar 

  23. Miao, H. et al. Coexistence of orbital degeneracy lifting and superconductivity in iron-based superconductors. Phys. Rev. B 89, 220503(R) (2014).

    Article  ADS  Google Scholar 

  24. Fernandes, R. M. & Vafek, O. Distinguishing spin–orbit coupling and nematic order in the electronic spectrum of iron-based superconductors. Phys. Rev. B 90, 214514 (2014).

    Article  ADS  Google Scholar 

  25. Evtushinsky, D. V. et al. Fusion of bogoliubons in Ba1−xKxFe2As2 and similarity of energy scales in high temperature superconductors. Preprint at http://arXiv.org/abs/1106.4584 (2011).

  26. Cvetkovic, V. & Vafek, O. Space group symmetry, spin–orbit coupling, and the low-energy effective Hamiltonian for iron-based superconductors. Phys. Rev. B 88, 134510 (2013).

    Article  ADS  Google Scholar 

  27. Evtushinsky, D. V. et al. Strong electron pairing at the iron 3d xz, yz orbitals in hole-doped BaFe2As2 superconductors revealed by angle-resolved photoemission spectroscopy. Phys. Rev. B 89, 064514 (2014).

    Article  ADS  Google Scholar 

  28. Pitcher, M. J. et al. Structure and superconductivity of LiFeAs. Chem. Commun. 101, 5918–5920 (2008).

    Article  Google Scholar 

  29. Antonov, V., Harmon, B. & Yaresko, A. Electronic Structure and Magneto-Optical Properties of Solids (Kluwer Academic Publishers, 2004).

    Google Scholar 

  30. Morozov, I. et al. Single crystal growth and characterization of superconducting LiFeAs. Cryst. Growth Des. 10, 4428–4432 (2010).

    Article  Google Scholar 

  31. Zhigadlo, N. D. et al. High-pressure flux growth, structure, and superconducting properties of LnFeAsO (Ln = Pr, Nd, Sm) single crystals. Phys. Rev. B 86, 214509 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank R. Fernandes, M. Dzero, G. Jackeli, V. Antropov, A. Chubukov, H. Grafe and M. Braden for helpful discussions, R. Beck for performing magnetization measurements and A. Fedorov, Y. Kushnirenko and E. Haubold for help at the beamline. We acknowledge Diamond Light Source for access to beamline I05 (proposals no. SI10372 and SI11643) that contributed to the results presented here. The work was supported under grants No. BO1912/2-2, BO1912/3-1, BE1749/13 and WU595/3-1. I.M. is grateful for support through RFBR grant No 15-03-99628a.

Author information

Authors and Affiliations

Authors

Contributions

S.V.B., D.V.E., T.K.K., M.H. and Z.-H.L. performed ARPES experiments. A.N.Y. carried out band-structure calculations. I.M., R.K., S.W., B.B., T.W. and N.D.Z. provided high-quality single crystals. S.V.B. analysed the data and wrote the paper. All authors contributed to the preparation and revisions of the manuscript.

Corresponding author

Correspondence to S. V. Borisenko.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4238 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisenko, S., Evtushinsky, D., Liu, ZH. et al. Direct observation of spin–orbit coupling in iron-based superconductors. Nature Phys 12, 311–317 (2016). https://doi.org/10.1038/nphys3594

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3594

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing