Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ptychographic measurements of ultrahigh-intensity laser–plasma interactions

Abstract

The extreme intensities now delivered by femtosecond lasers make it possible to drive and control relativistic motion of charged particles with light1, opening a path to compact particle accelerators2,3 and coherent X-ray sources4,5. Accurately characterizing the dynamics of ultrahigh-intensity laser–plasma interactions as well as the resulting light and particle emissions is an essential step towards such achievements. This remains a considerable challenge, as the relevant scales typically range from picoseconds to attoseconds in time, and from micrometres to nanometres in space. In these experiments, owing to the extreme prevalent physical conditions, measurements can be performed only at macroscopic distances from the targets, yielding only partial information at these microscopic scales. This letter presents a major advance by applying the concepts of ptychography6,7 to such measurements, and thus retrieving microscopic information hardly accessible until now. This paves the way to a general approach for the metrology of extreme laser–plasma interactions on very small spatial and temporal scales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measurement scheme.
Figure 2: Harmonic beams generated at different positions on a transient plasma grating.
Figure 3: Ptychographic measurements of different harmonic sources and plasma surface shapes.

Similar content being viewed by others

References

  1. Mourou, G. A., Tajima, T. & Bulanov, S. V. Optics in the relativistic regime. Rev. Mod. Phys. 78, 309–371 (2006).

    Article  ADS  Google Scholar 

  2. Malka, V. et al. Principles and applications of compact laser-plasma accelerators. Nature Phys. 4, 447–453 (2008).

    Article  ADS  Google Scholar 

  3. Daido, H., Nishiuchi, M. & Pirozhkov, A. S. Review of laser-driven ion sources and their applications. Rep. Prog. Phys. 75, 056401 (2012).

    Article  ADS  Google Scholar 

  4. Sansone, G., Poletto, L. & Nisoli, M. High-energy attosecond light sources. Nature Photon. 5, 655–663 (2011).

    Article  ADS  Google Scholar 

  5. Corde, S. et al. Femtosecond x rays from laser–plasma accelerators. Rev. Mod. Phys. 85, 1–48 (2013).

    Article  ADS  Google Scholar 

  6. Rodenburg, J. M. et al. Hard-x-ray lensless imaging of extended objects. Phys. Rev. Lett. 98, 034801 (2007).

    Article  ADS  Google Scholar 

  7. Thibault, P. et al. High-resolution scanning x-ray diffraction microscopy. Science 321, 379–382 (2008).

    Article  ADS  Google Scholar 

  8. Nellist, P. D., Mccallum, B. & Rodenburg, J. M. Resolution beyond the ‘information limit’ in transmission electron microscopy. Nature 374, 630–632 (1994).

    Article  ADS  Google Scholar 

  9. Thibault, P., Dierolf, M., Bunk, O., Menzel, A. & Pfeiffer, F. Probe retrieval in ptychographic coherent diffractive imaging. Ultramicroscopy 109, 338–343 (2009).

    Article  Google Scholar 

  10. Thaury, C. et al. Plasma mirrors for ultrahigh-intensity optics. Nature Phys. 3, 424–429 (2007).

    Article  ADS  Google Scholar 

  11. Teubner, U. & Gibbon, P. High-order harmonics from laser-irradiated plasma surfaces. Rev. Mod. Phys. 81, 445–479 (2009).

    Article  ADS  Google Scholar 

  12. Thaury, C. & Quéré, F. High-order harmonic and attosecond pulse generation on plasma mirrors: Basic mechanisms. J. Phys. B 43, 213001 (2010).

    Article  ADS  Google Scholar 

  13. Dromey, B. et al. High harmonic generation in the relativistic limit. Nature Phys. 2, 456–459 (2006).

    Article  ADS  Google Scholar 

  14. Dromey, B. et al. Bright multi-keV harmonic generation from relativistically oscillating plasma surfaces. Phys. Rev. Lett. 99, 085001 (2007).

    Article  ADS  Google Scholar 

  15. Tsakiris, G. D., Eidmann, K., Meyer-ter-Vehn, J. & Krausz, F. Route to intense single attosecond pulses. New J. Phys. 8, 19 (2006).

    Article  ADS  Google Scholar 

  16. Quéré, F. Ultrafast science: Attosecond plasma optics. Nature Phys. 5, 93–94 (2009).

    Article  ADS  Google Scholar 

  17. Ma, G. et al. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses. Phys. Plasmas 22, 033105 (2015).

    Article  ADS  Google Scholar 

  18. Vincenti, H., Monchocé, S., Kahaly, S., Martin, P. & Quéré, F. Optical properties of relativistic plasma mirrors. Nature Commun. 5, 3403 (2014).

    Article  ADS  Google Scholar 

  19. Malvache, A., Borot, A., Quéré, F. & Lopez-Martens, R. Coherent wake emission spectroscopy as a probe of steep plasma density profiles. Phys. Rev. E 87, 035101 (2013).

    Article  ADS  Google Scholar 

  20. Monchocé, S. et al. Optically controlled solid-density transient plasma gratings. Phys. Rev. Lett. 112, 145008 (2014).

    Article  ADS  Google Scholar 

  21. Colombier, J. P. et al. Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples. Phys. Rev. B 74, 224106 (2006).

    Article  ADS  Google Scholar 

  22. Kahaly, S. et al. Direct observation of density gradient effects in harmonic generation from plasma mirrors. Phys. Rev. Lett. 110, 175001 (2013).

    Article  ADS  Google Scholar 

  23. Mairesse, Y. & Quéré, F. Frequency-resolved optical gating for complete reconstruction of attosecond bursts. Phys. Rev. A 71, 011401 (2005).

    Article  ADS  Google Scholar 

  24. Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).

    Article  ADS  Google Scholar 

  25. Kammel, S. & Leon, F. Deflectometric measurement of specular surfaces. IEEE Trans. Instrum. Meas. 57, 763–769 (2008).

    Article  Google Scholar 

  26. Dromey, B. et al. Diffraction-limited performance and focusing of high harmonics from relativistic plasmas. Nature Phys. 5, 146–152 (2009).

    Article  ADS  Google Scholar 

  27. Quéré, F. et al. Coherent wake emission of high-order harmonics from overdense plasmas. Phys. Rev. Lett. 96, 125004 (2006).

    Article  ADS  Google Scholar 

  28. Quéré, F. et al. Phase properties of laser high-order harmonics generated on plasma mirrors. Phys. Rev. Lett. 100, 095004 (2008).

    Article  ADS  Google Scholar 

  29. Ceccotti, T. et al. Evidence of resonant surface-wave excitation in the relativistic regime through measurements of proton acceleration from grating targets. Phys. Rev. Lett. 111, 185001 (2013).

    Article  ADS  Google Scholar 

  30. Kahaly, S. et al. Near-complete absorption of intense, ultrashort laser light by sub-λ gratings. Phys. Rev. Lett. 101, 145001 (2008).

    Article  ADS  Google Scholar 

  31. Purvis, M. A. et al. Relativistic plasma nanophotonics for ultrahigh energy density physics. Nature Photon. 7, 796–800 (2013).

    Article  ADS  Google Scholar 

  32. Fedeli, L. et al. Electron acceleration by relativistic surface plasmons in laser-grating interaction. Phys. Rev. Lett. (in the press).

  33. Spangenberg, D., Neethling, P., Rohwer, E., Brügmann, M. H. & Feurer, T. Time-domain ptychography. Phys. Rev. A 91, 021803 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  34. Kim, K. T. et al. Manipulation of quantum paths for space–time characterization of attosecond pulses. Nature Phys. 9, 159–163 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to P. d’Oliveira, F. Réau, C. Pothier and D. Garzella for operating the UHI100 laser source. The research leading to these results has received financial support from the European Research Council (ERC Grant Agreement number 240013), from Investissements dAvenir LabEx PALM (ANR-10-LABX-0039-PALM) through the ‘Ptychograt’ grant, from Agence Nationale pour la Recherche through grant ANR-14-CE32-0011, from OSEO through SAPHIR (contact number I0901001W), and from LASERLAB-EUROPE (grant agreement no. 284464, EC’s Seventh Framework Programme) through the INREX Joint Research Action.

Author information

Authors and Affiliations

Authors

Contributions

F.Q. proposed the idea of the measurement scheme. S.M., A.L., S.K. and F.Q. conceived the experimental set-up. The experiment was carried out by A.L. and S.M. with the help of S.K. A.L. processed the experimental data, C.B.-B. wrote the phase-retrieval program, A.L. and C.B.-B. worked together on the application of this program to the experimental results. The overall work was supervised by F.Q.

Corresponding author

Correspondence to F. Quéré.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 17954 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leblanc, A., Monchocé, S., Bourassin-Bouchet, C. et al. Ptychographic measurements of ultrahigh-intensity laser–plasma interactions. Nature Phys 12, 301–305 (2016). https://doi.org/10.1038/nphys3596

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3596

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing