Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Generation of heralded entanglement between distant hole spins

Abstract

Quantum entanglement emerges naturally in interacting quantum systems and plays a central role in quantum information processing1,2,3,4. But the generation of entanglement does not require direct interactions: single-photon detection in spin-flip Raman scattering projects two distant spins onto a maximally entangled state, provided that it is impossible to determine the source of the detected photon5. Here, we demonstrate such heralded quantum entanglement6,7,8,9 of two quantum-dot hole spins separated by 5 m using single-photon interference. Thanks to fast spin initialization in 10 ns, hole-spin coherence lasting 40 ns and efficient photon extraction from dots10,11,12 embedded in leaky microcavity structures, we generate 2,300 entangled spin pairs per second, which represents a 1,000-fold improvement as compared to previous experiments13. The delayed two-photon interference scheme we developed allows the efficient verification of quantum correlations. Combined with schemes for transferring quantum information to a long-lived memory qubit14, fast entanglement generation could impact quantum repeater architectures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: Coherence and rotation of the hole pseudo-spin.
Figure 3: Characterization of the heralded entangled state.

Similar content being viewed by others

References

  1. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

    MATH  Google Scholar 

  2. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  Google Scholar 

  3. Childress, L., Taylor, J. M., Sørensen, A. S. & Lukin, M. D. Fault-tolerant quantum communication based on solid-state photon emitters. Phys. Rev. Lett. 96, 070504 (2006).

    Article  ADS  Google Scholar 

  4. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  5. Cabrillo, C., Cirac, J. I., García-Fernández, P. & Zoller, P. Creation of entangled states of distant atoms by interference. Phys. Rev. A 59, 1025–1033 (1999).

    Article  ADS  Google Scholar 

  6. Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007).

    Article  ADS  Google Scholar 

  7. Hofmann, J. et al. Heralded entanglement between widely separated atoms. Science 337, 72–75 (2012).

    Article  ADS  Google Scholar 

  8. Slodicka, L. et al. Atom-atom entanglement by single-photon detection. Phys. Rev. Lett. 110, 083603 (2013).

    Article  ADS  Google Scholar 

  9. Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    ADS  Google Scholar 

  10. Gao, W. B., Fallahi, P., Togan, E., Miguel-Sanchez, J. & Imamoğlu, A. et al. Observation of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430 (2012).

    Article  ADS  Google Scholar 

  11. De Greve, K. et al. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421–425 (2012).

    Article  ADS  Google Scholar 

  12. Shaibley, J. R. et al. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon. Phys. Rev. Lett. 110, 167401 (2013).

    Article  ADS  Google Scholar 

  13. Hucul, D. et al. Modular entanglement of atomic qubits using photons and phonons. Nature Phys. 11, 37–42 (2015).

    Article  ADS  Google Scholar 

  14. Meyer, H. M. et al. Direct photonic coupling of a semiconductor quantum dot and a trapped ion. Phys. Rev. Lett. 114, 123001 (2015).

    Article  ADS  Google Scholar 

  15. Brunner, D. et al. A coherent single-hole spin in a semiconductor. Science 325, 70–72 (2009).

    Article  ADS  Google Scholar 

  16. De Greve, K. et al. Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit. Nature Phys. 7, 872–878 (2011).

    Article  ADS  Google Scholar 

  17. Greilich, K., Carter, S. G., Kim, D., Bracker, A. S. & Gammon, D. Optical control of one and two hole spins in interacting quantum dots. Nature Photon. 5, 702–708 (2011).

    Article  ADS  Google Scholar 

  18. Carter, S. G. et al. Strong hyperfine-induced modulation of an optically driven hole spin in an InAs quantum dot. Phys. Rev. B 89, 075316 (2014).

    Article  ADS  Google Scholar 

  19. Gazzano, O. et al. Bright solid-state sources of indistinguishable single photons. Nature Commun. 4, 1425 (2013).

    Article  ADS  Google Scholar 

  20. Xu, X. et al. Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling. Phys. Rev. Lett. 99, 097401 (2007).

    Article  ADS  Google Scholar 

  21. Atatüre, M. et al. Quantum-dot spin-state preparation with near-unity fidelity. Science 312, 551–553 (2006).

    Article  ADS  Google Scholar 

  22. Bayer, M. et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 65, 195315 (2002).

    Article  ADS  Google Scholar 

  23. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article  ADS  Google Scholar 

  24. Loudon, R. The Quantum Theory of Light (Oxford Univ. Press, 2000).

    MATH  Google Scholar 

  25. Matthiesen, C., Vamivakas, A. N. & Atatüre, M. Subnatural linewidth single photons from a quantum dot. Phys. Rev. Lett. 108, 093602 (2012).

    Article  ADS  Google Scholar 

  26. Fernandez, G., Volz, T., Desbuquois, R., Badolato, A. & Imamoğlu, A. Optically tunable spontaneous Raman fluorescence from a single self-assembled InGaAs quantum dot. Phys. Rev. Lett. 103, 087406 (2009).

    Article  ADS  Google Scholar 

  27. Robledo, L. et al. High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011).

    Article  ADS  Google Scholar 

  28. Weiss, K. M., Elzerman, J. M., Delley, Y. L., Miguel-Sanchez, J. & Imamoğlu, A. Coherent two-electron spin qubits in an optically active pair of coupled InGaAs quantum dots. Phys. Rev. Lett. 109, 107401 (2012).

    Article  ADS  Google Scholar 

  29. Reithmaier, G. et al. On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors. Sci. Rep. 3, 1901 (2013).

    Article  Google Scholar 

  30. Arcari, M. et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The Authors acknowledge many useful discussions with M. Kroner. This work is supported by NCCR Quantum Photonics (NCCR QP), the research instrument of the Swiss National Science Foundation (SNSF), and by the Swiss NSF under Grant No. 200020-159196.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to this work.

Corresponding author

Correspondence to Ataç Imamoğlu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1523 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delteil, A., Sun, Z., Gao, Wb. et al. Generation of heralded entanglement between distant hole spins. Nature Phys 12, 218–223 (2016). https://doi.org/10.1038/nphys3605

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3605

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing