Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Selective scattering between Floquet–Bloch and Volkov states in a topological insulator

Abstract

The coherent optical manipulation of solids is emerging as a promising way to engineer novel quantum states of matter1,2,3,4,5. The strong time-periodic potential of intense laser light can be used to generate hybrid photon–electron states. Interaction of light with Bloch states leads to Floquet–Bloch states, which are essential in realizing new photo-induced quantum phases6,7,8. Similarly, dressing of free-electron states near the surface of a solid generates Volkov states, which are used to study nonlinear optics in atoms and semiconductors9. The interaction of these two dynamic states with each other remains an open experimental problem. Here we use time- and angle-resolved photoemission spectroscopy (Tr-ARPES) to selectively study the transition between these two states on the surface of the topological insulator Bi2Se3. We find that the coupling between the two strongly depends on the electron momentum, providing a route to enhance or inhibit it. Moreover, by controlling the light polarization we can negate Volkov states to generate pure Floquet–Bloch states. This work establishes a systematic path for the coherent manipulation of solids via light–matter interaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dressed electron states in the Tr-ARPES spectra of a topological insulator and experimental geometry.
Figure 2: Tr-ARPES spectra of Bi2Se3 at t =0 for P-polarized pump.
Figure 3: Asymmetry in the Tr-ARPES spectra.
Figure 4: Tr-ARPES spectra at t = 0 for S-polarized pump.

Similar content being viewed by others

References

  1. Hu, W. et al. Optically enhanced coherent transport in YBa2Cu3O6.5 by ultrafast redistribution of interlayer coupling. Nature Mater. 13, 705–711 (2014).

    Article  ADS  Google Scholar 

  2. Matsunaga, R. et al. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science 345, 1145–1149 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  3. Kirilyuk, A., Kimel, A. V. & Rasing, T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).

    Article  ADS  Google Scholar 

  4. Caviglia, A. D. et al. Ultrafast strain engineering in complex oxide heterostructures. Phys. Rev. Lett. 108, 136801 (2012).

    Article  ADS  Google Scholar 

  5. Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in Mott insulators. Nature Commun. 6, 6708 (2015).

    Article  ADS  Google Scholar 

  6. Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Phys. 7, 490–495 (2011).

    Article  ADS  Google Scholar 

  7. Grushin, A. G., Gómez-León, Á. & Neupert, T. Floquet fractional Chern insulators. Phys. Rev. Lett. 112, 156801 (2014).

    Article  ADS  Google Scholar 

  8. Kitagawa, T., Oka, T., Brataas, A., Fu, L. & Demler, E. Transport properties of nonequilibrium systems under the application of light: Photoinduced quantum Hall insulators without Landau levels. Phys. Rev. B 84, 235108 (2011).

    Article  ADS  Google Scholar 

  9. Wegener, M. Extreme Non-linear Optics (Springer, 2005).

    MATH  Google Scholar 

  10. Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177–180 (2014).

    Article  ADS  Google Scholar 

  11. Faisal, F. H. M. & Kamiński, J. Z. Floquet–Bloch theory of high-harmonic generation in periodic structures. Phys. Rev. A 56, 748–762 (1997).

    Article  ADS  Google Scholar 

  12. Galitski, V. M., Goreslavskii, S. P. & Elesin, V. F. Electric and magnetic properties of a semiconductor in the field of a strong electromagnetic wave. J. Exp. Theor. Phys. 30, 117–122 (1970).

    ADS  Google Scholar 

  13. Kohn, W. Periodic thermodynamics. J. Stat. Phys. 103, 417–423 (2001).

    Article  MathSciNet  Google Scholar 

  14. Eisert, J., Friesdorf, M. & Gogolin, C. Quantum many-body systems out of equilibrium. Nature Phys. 11, 124–130 (2015).

    Article  ADS  Google Scholar 

  15. Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet–Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013).

    Article  ADS  Google Scholar 

  16. Schmitt, F. et al. Transient electronic structure and melting of a charge density wave in TbTe3 . Science 321, 1649–1652 (2008).

    Article  ADS  Google Scholar 

  17. Saathoff, G., Miaja-Avila, L., Aeschlimann, M., Murnane, M. M. & Kapteyn, H. C. Laser-assisted photoemission from surfaces. Phys. Rev. A 77, 022903 (2008).

    Article  ADS  Google Scholar 

  18. Miaja-Avila, L. et al. Ultrafast studies of electronic processes at surfaces using the laser-assisted photoelectric effect with long-wavelength dressing light. Phys. Rev. A 79, 030901 (2009).

    Article  ADS  Google Scholar 

  19. Glover, T. E., Schoenlein, R. W., Chin, A. H. & Shank, C. V. Observation of laser assisted photoelectric effect and femtosecond high order harmonic radiation. Phys. Rev. Lett. 76, 2468–2471 (1996).

    Article  ADS  Google Scholar 

  20. Madsen, L. B. Strong-field approximation in laser-assisted dynamics. Am. J. Phys. 73, 57–62 (2005).

    Article  ADS  Google Scholar 

  21. Baggesen, J. C. & Madsen, L. B. Theory for time-resolved measurements of laser-induced electron emission from metal surfaces. Phys. Rev. A 78, 032903 (2008).

    Article  ADS  Google Scholar 

  22. Joachain, C. J., Kylstra, N. J. & Potvliege, R. M. Atoms in Intense Laser Fields (Cambridge Univ. Press, 2014).

    MATH  Google Scholar 

  23. Park, S. T. Interference in Floquet–Volkov transitions. Phys. Rev. A 90, 013420 (2014).

    Article  ADS  Google Scholar 

  24. Wang, Y. H. et al. Observation of a warped helical spin texture in Bi2Se3 from circular dichroism angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 107, 207602 (2011).

    Article  ADS  Google Scholar 

  25. Wang, Y. H. et al. Measurement of intrinsic Dirac fermion cooling on the surface of the topological insulator Bi2Se3 using time-resolved and angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 109, 127401 (2012).

    Article  ADS  Google Scholar 

  26. Sobota, J. A. et al. Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi2Se3 . Phys. Rev. Lett. 108, 117403 (2012).

    Article  ADS  Google Scholar 

  27. Hajlaoui, M. et al. Ultrafast surface carrier dynamics in the topological insulator Bi2Te3 . Nano Lett. 12, 3532–3536 (2012).

    Article  ADS  Google Scholar 

  28. Hajlaoui, M. et al. Tuning a Schottky barrier in a photoexcited topological insulator with transient Dirac cone electron–hole asymmetry. Nature Commun. 5, 3003 (2014).

    Article  ADS  Google Scholar 

  29. Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008).

    Article  ADS  Google Scholar 

  30. Oka, T. & Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 79, 081406 (2009).

    Article  ADS  Google Scholar 

  31. Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011).

    Article  ADS  Google Scholar 

  32. Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013).

    Article  ADS  Google Scholar 

  33. Freericks, J. K., Krishnamurthy, H. R. & Pruschke, T. Theoretical description of time-resolved photoemission spectroscopy: Application to pump–probe experiments. Phys. Rev. Lett. 102, 136401 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank C. Lee for useful discussions. This work is supported by US Department of Energy (DOE), Basic Energy Sciences, Division of Materials Sciences and Engineering (experimental set-up, data acquisition and theory), Army Research Office (electron spectrometer) and by the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4540 (data analysis).

Author information

Authors and Affiliations

Authors

Contributions

F.M. performed the experiments and the data analysis. C.-K.C. developed the theoretical methods and the numerical simulations. F.M. and C.-K.C. wrote the initial drafts of the main text and the Supplementary Information, respectively. N.G., P.A.L. and Z.A. gave crucial inputs to the writing of the manuscript. The samples were synthesized by D.G. and Y.L. This project was supervised by N.G.

Corresponding author

Correspondence to Nuh Gedik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 769 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmood, F., Chan, CK., Alpichshev, Z. et al. Selective scattering between Floquet–Bloch and Volkov states in a topological insulator. Nature Phys 12, 306–310 (2016). https://doi.org/10.1038/nphys3609

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3609

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing