Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Topological Thouless pumping of ultracold fermions

Abstract

An electron gas in a one-dimensional periodic potential can be transported even in the absence of a voltage bias if the potential is slowly and periodically modulated in time. Remarkably, the transferred charge per cycle is sensitive only to the topology of the path in parameter space. Although this so-called Thouless charge pump was first proposed more than thirty years ago1, it has not yet been realized. Here we report the demonstration of topological Thouless pumping using ultracold fermionic atoms in a dynamically controlled optical superlattice. We observe a shift of the atomic cloud as a result of pumping, and extract the topological invariance of the pumping process from this shift. We demonstrate the topological nature of the Thouless pump by varying the topology of the pumping path and verify that the topological pump indeed works in the quantum regime by varying the speed and temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Rice–Mele model.
Figure 2: Observation of cRM pumping and sliding lattice pumping.
Figure 3: Topological aspects of cRM pumping.
Figure 4: Conditions for quantum pumping.

Similar content being viewed by others

References

  1. Thouless, D. J. Quantization of particle transport. Phys. Rev. B 27, 6083–6087 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  2. Mermin, N. D. The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  3. Thouless, D. J. Topological Quantum Numbers in Nonrelativistic Physics (World Scientific, 1998).

    Book  Google Scholar 

  4. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  Google Scholar 

  5. Klitzing, K. v., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article  ADS  Google Scholar 

  6. Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

    Article  ADS  Google Scholar 

  7. Altshuler, B. L. & Glazman, L. I. Pumping electrons. Science 283, 1864–1865 (1999).

    Article  Google Scholar 

  8. Switkes, M., Marcus, C. M., Campman, K. & Gossard, A. C. An adiabatic quantum electron pump. Science 283, 1905–1908 (1999).

    Article  ADS  Google Scholar 

  9. Blumenthal, M. D. et al. Gigahertz quantized charge pumping. Nature Phys. 3, 343–347 (2007).

    Article  ADS  Google Scholar 

  10. Kaestner, B. et al. Single-parameter nonadiabatic quantized charge pumping. Phys. Rev. B 77, 153301 (2008).

    Article  ADS  Google Scholar 

  11. Shilton, J. M. et al. High-frequency single-electron transport in a quasi-one-dimensional GaAs channel induced by surface acoustic waves. J. Phys. Condens. Matter 8, L531–L539 (1996).

    Article  Google Scholar 

  12. Aidelsburger, M. et al. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185301 (2013).

    Article  ADS  Google Scholar 

  13. Miyake, H., Siviloglou, G. A., Kennedy, C. J., Burton, W. C. & Ketterle, W. Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett. 111, 185302 (2013).

    Article  ADS  Google Scholar 

  14. Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

    Article  ADS  Google Scholar 

  15. Aidelsburger, M. et al. Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nature Phys. 11, 162–166 (2015).

    Article  ADS  Google Scholar 

  16. Mancini, M. et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 349, 1510–1513 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  17. Stuhl, B. K., Lu, H.-I., Aycock, L. M., Genkina, D. & Spielman, I. B. Visualizing edge states with an atomic Bose gas in the quantum Hall regime. Science 349, 1514–1518 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  18. Wang, L., Troyer, M. & Dai, X. Topological charge pumping in a one-dimensional optical lattice. Phys. Rev. Lett. 111, 026802 (2013).

    Article  ADS  Google Scholar 

  19. Rice, M. J. & Mele, E. J. Elementary excitations of a linearly conjugated diatomic polymer. Phys. Rev. Lett. 49, 1455–1459 (1982).

    Article  ADS  Google Scholar 

  20. Atala, M. et al. Direct measurement of the Zak phase in topological Bloch bands. Nature Phys. 9, 795–800 (2013).

    Article  ADS  Google Scholar 

  21. Kitagawa, M. et al. Two-color photoassociation spectroscopy of ytterbium atoms and the precise determinations of s-wave scattering lengths. Phys. Rev. A 77, 012719 (2008).

    Article  ADS  Google Scholar 

  22. Qian, Y., Gong, M. & Zhang, C. Quantum transport of bosonic cold atoms in double-well optical lattices. Phys. Rev. A 84, 013608 (2011).

    Article  ADS  Google Scholar 

  23. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  24. Shen, S.-Q. Topological Insulators: Dirac Equation in Condensed Matters (Springer, 2013).

    MATH  Google Scholar 

  25. Brouwer, P. W. Scattering approach to parametric pumping. Phys. Rev. B 58, R10135–R10138 (1998).

    Article  ADS  Google Scholar 

  26. Mandel, O. et al. Coherent transport of neutral atoms in spin-dependent optical lattice potentials. Phys. Rev. Lett. 91, 010407 (2003).

    Article  ADS  Google Scholar 

  27. Fu, L. & Kane, C. L. Time reversal polarization and a Z2 adiabatic spin pump. Phys. Rev. B 74, 195312 (2006).

    Article  ADS  Google Scholar 

  28. Aubry, S. & André, G. Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Isr. Phys. Soc. 3, 133–140 (1980).

    MathSciNet  MATH  Google Scholar 

  29. Marra, P., Citro, R. & Ortix, C. Fractional quantization of the topological charge pumping in a one-dimensional superlattice. Phys. Rev. B 91, 125411 (2015).

    Article  ADS  Google Scholar 

  30. Wei, R. & Mueller, E. J. Anomalous charge pumping in a one-dimensional optical superlattice. Phys. Rev. A 92, 013609 (2015).

    Article  ADS  Google Scholar 

  31. Lohse, M. et al. A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice. http://dx.doi.org/10.1038/nphys3584 (2015).

  32. Taie, S. et al. Realization of a SU(2) × SU(6) system of fermions in a cold atomic gas. Phys. Rev. Lett. 105, 190401 (2010).

    Article  ADS  Google Scholar 

  33. Taie, S. et al. Coherent driving and freezing of bosonic matter wave in an optical Lieb lattice. Sci. Adv. 1, e1500854 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank N. Kawakami, S. Fujimoto, J. Ozaki, T. Fukui, I. Maruyama, Y. Hatsugai and S. Nakamura for valuable discussions and A. Sawada for experimental assistance. This work was supported by the Grant-in-Aid for Scientific Research of JSPS (No. 25220711, No. 26247064, No. 24-1698), and the Impulsing Paradigm Change through Disruptive Technologies (ImPACT) Program. L.W. and M.T. were supported by ERC Advanced Grant SIMCOFE and by the Swiss National Science Foundation through the National Center of Competence in Research Quantum Science and Technology QSIT. L.W. and M.T. acknowledge X. Dai for collaborations on the related topic.

Author information

Authors and Affiliations

Authors

Contributions

S.N. and T.T. carried out experiments and the data analysis. S.T. conceived the experimental techniques for the superlattice. T.I. and H.O. contributed to building the superlattice set-up. L.W. carried out the theoretical calculations. Y.T. conducted the whole experiment. All the authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Shuta Nakajima.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2997 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakajima, S., Tomita, T., Taie, S. et al. Topological Thouless pumping of ultracold fermions. Nature Phys 12, 296–300 (2016). https://doi.org/10.1038/nphys3622

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3622

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing