Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

On the growth and form of cortical convolutions

Abstract

The rapid growth of the human cortex during development is accompanied by the folding of the brain into a highly convoluted structure1,2,3. Recent studies have focused on the genetic and cellular regulation of cortical growth4,5,6,7,8, but understanding the formation of the gyral and sulcal convolutions also requires consideration of the geometry and physical shaping of the growing brain9,10,11,12,13,14,15. To study this, we use magnetic resonance images to build a 3D-printed layered gel mimic of the developing smooth fetal brain; when immersed in a solvent, the outer layer swells relative to the core, mimicking cortical growth. This relative growth puts the outer layer into mechanical compression and leads to sulci and gyri similar to those in fetal brains. Starting with the same initial geometry, we also build numerical simulations of the brain modelled as a soft tissue with a growing cortex, and show that this also produces the characteristic patterns of convolutions over a realistic developmental course. All together, our results show that although many molecular determinants control the tangential expansion of the cortex, the size, shape, placement and orientation of the folds arise through iterations and variations of an elementary mechanical instability modulated by early fetal brain geometry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physical mimic and numerical simulation of tangential cortical expansion.
Figure 2: Sectional views of model brains during convolutional development.
Figure 3: Mechanical stress orients convolutions.
Figure 4: Comparison of real and simulated folding patterns.

Similar content being viewed by others

References

  1. Griffiths, P. D., Reeves, M., Morris, J. & Larroche, J. Atlas of Fetal and Neonatal Brain MR Imaging (Mosby, 2010).

    Google Scholar 

  2. Girard, N. & Gambarelli, D. Normal Fetal Brain: Magnetic Resonance Imaging. An Atlas with Anatomic Correlations (Label Production, 2001).

    Google Scholar 

  3. Armstrong, E., Scleicher, A., Omran, H., Curtis, M. & Zilles, K. The ontogeny of human gyrification. Cereb. Cortex 5, 56–63 (1995).

    Article  Google Scholar 

  4. Sun, T. & Hevner, R. F. Growth and folding of the mammalian cerebral cortex: from molecules to malformations. Nature Rev. Neurosci. 15, 217–232 (2014).

    Article  Google Scholar 

  5. Lui, J. H., Hansen, D. V. & Kriegstein, A. R. Development and evolution of the human neocortex. Cell 146, 18–36 (2011).

    Google Scholar 

  6. Bae, B. et al. Evolutionarily dynamic alternative splicing of GPR56 regulates regional cerebral cortical patterning. Science 343, 764–768 (2014).

    Article  ADS  Google Scholar 

  7. Rash, B. G., Tomasi, S., Lim, H. D., Suh, C. Y. & Vaccarino, F. M. Cortical gyrification induced by fibroblast growth factor 2 in the mouse brain. J. Neurosci. 33, 10802–10814 (2013).

    Article  Google Scholar 

  8. Reillo, I., de Juan Romero, C., Garcia-Cabezas, M. A. & Borrell, V. A role of intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb. Cortex 21, 1674–1694 (2011).

    Article  Google Scholar 

  9. Richman, D. P., Stewart, R. M., Hutchinson, J. W. & Caviness, V. S. Jr Mechanical model of brain convolutional development. Science 189, 18–21 (1975).

    Article  ADS  Google Scholar 

  10. Xu, G. et al. Axons pull on the brain, but tension does not drive cortical folding. J. Biomech. Eng. 132, 071013 (2010).

    Article  Google Scholar 

  11. Toro, R. & Burnod, Y. A morphogenetic model for the development of cortical convolutions. Cereb. Cortex 15, 1900–1913 (2005).

    Article  Google Scholar 

  12. Nie, J. et al. A computational model of cerebral cortex folding. J. Theor. Biol. 264, 467–478 (2010).

    Article  Google Scholar 

  13. Budday, S., Raybaud, C. & Kuhl, E. A mechanical model predicts morphological abnormalities in the developing human brain. Sci. Rep. 4, 5644 (2014).

    Article  ADS  Google Scholar 

  14. Bayly, P. V., Okamoto, R. J., Xu, G., Shi, Y. & Taber, L. A. A cortical folding model incorporating stress-dependent growth explains gyral wavelengths and stress patterns in the developing brain. Phys. Biol. 10, 016005 (2013).

    Article  ADS  Google Scholar 

  15. Tallinen, T., Chung, J. Y., Biggins, J. S. & Mahadevan, L. Gyrification from constrained cortical expansion. Proc. Natl Acad. Sci. USA 111, 12667–12672 (2014).

    Article  ADS  Google Scholar 

  16. Ono, M., Kubik, S. & Abernathey, C. D. Atlas of the Cerebral Sulci (Georg Thieme Verlag, 1990).

    Google Scholar 

  17. Striedter, G. F. Principles of Brain Evolution (Sinauer Associates, 2005).

    Google Scholar 

  18. Mota, B. & Herculano-Houzel, S. Cortical folding scales universally with surface area and thickness, not number of neurons. Science 349, 74–77 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  19. Zilles, K., Palomero-Gallagher, N. & Amunts, K. Development of cortical folding during evolution and ontogeny. Trends Neurosci. 36, 275–284 (2013).

    Article  Google Scholar 

  20. Welker, W. Why does cerebral cortex fissure and fold: a review of determinants of gyri and sulci. Cereb. Cortex 8, 3–136 (1990).

    Article  Google Scholar 

  21. van Essen, D. C. A tension based theory of morphogenesis and compact wiring in the central nervous system. Nature 385, 313–318 (1997).

    Article  ADS  Google Scholar 

  22. Ronan, L. et al. Differential tangential expansion as a mechanism for cortical gyrification. Cereb. Cortex 24, 2219–2228 (2014).

    Article  Google Scholar 

  23. Holland, M. A., Miller, K. E. & Kuhl, E. Emerging brain morphologies from axonal elongation. Ann. Biomed. Eng. 43, 1640–1653 (2015).

    Article  Google Scholar 

  24. Striedter, G. F., Srinivasan, S. & Monuki, E. S. Cortical folding: when, where, how and why? Annu. Rev. Neurosci. 38, 291–307 (2015).

    Article  Google Scholar 

  25. Bayly, P. V., Taber, L. A. & Kroenke, C. D. Mechanical forces in cerebral cortical folding: a review of measurements and models. J. Mech. Behav. Biomed. 29, 568–581 (2013).

    Article  Google Scholar 

  26. Todd, P. H. A geometric model for the cortical folding pattern of simple folded brains. J. Theor. Biol. 97, 529–538 (1982).

    Article  MathSciNet  Google Scholar 

  27. Meng, Y., Li, G., Lin, W., Gilmore, J. H. & Shen, D. Spatial distribution and longitudinal development of deep cortical sulcal landmarks in infants. NeuroImage 100, 206–218 (2014).

    Article  Google Scholar 

  28. Li, K. et al. Gyral folding pattern analysis via surface profiling. NeuroImage 52, 1202–1214 (2010).

    Article  Google Scholar 

  29. Biot, M. A. Mechanics of Incremental Deformations (John Wiley, 1965).

    Book  Google Scholar 

  30. Hohlfeld, E. & Mahadevan, L. Unfolding the sulcus. Phys. Rev. Lett. 106, 105702 (2011).

    Article  ADS  Google Scholar 

  31. Hohlfeld, E. & Mahadevan, L. Scale and nature of sulcification patterns. Phys. Rev. Lett. 109, 025701 (2012).

    Article  ADS  Google Scholar 

  32. Tallinen, T., Biggins, J. & Mahadevan, L. Surface sulci in squeezed soft solids. Phys. Rev. Lett. 110, 024302 (2013).

    Article  ADS  Google Scholar 

  33. Toro, R. et al. Brain size and folding of the human cerebral cortex. Cereb. Cortex 18, 2352–2357 (2008).

    Article  Google Scholar 

  34. Germanaud, D. et al. Larger is twistier: spectral analysis of gyrification (SPANGY) applied to adult brain size polymorphism. NeuroImage 63, 1257–1272 (2012).

    Article  Google Scholar 

  35. Lefèvre, J. et al. Are developmental trajectories of cortical folding comparable between cross-sectional datasets of fetuses and preterm newborns? Cereb. Cortex http://dx.doi.org/10.1093/cercor/bhv123 (2015).

  36. Aronica, E., Becker, A. J. & Spreafico, R. Malformations of cortical development. Brain Pathol. 22, 380–401 (2012).

    Article  Google Scholar 

  37. Bond, J. et al. A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nature Genet. 37, 353–355 (2005).

    Article  Google Scholar 

  38. Hong, S. E. et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nature Genet. 26, 93–96 (2000).

    Article  ADS  Google Scholar 

  39. Serag, A. et al. Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression. NeuroImage 59, 2255–2265 (2012).

    Article  Google Scholar 

  40. Zilles, K., Armstrong, E., Scleicher, A. & Kretschmann, H. The human pattern in gyrification in the cerebral cortex. Anat. Embryol. 170, 173–179 (1988).

    Article  Google Scholar 

Download references

Acknowledgements

We thank CSC—IT Center for Science, Finland, for computational resources and J. C. Weaver for help with 3D printing. This work was supported by the Academy of Finland (T.T.), Agence Nationale de la Recherche (ANR-12-JS03-001-01, “Modegy”) (N.G. and J.L.), the Wyss Institute for Biologically Inspired Engineering (J.Y.C. and L.M.), and fellowships from the MacArthur Foundation and the Radcliffe Institute (L.M.).

Author information

Authors and Affiliations

Authors

Contributions

T.T., J.Y.C. and L.M. conceived the model and wrote the paper. T.T. developed and performed the numerical simulations. J.Y.C. developed and performed the physical experiments. J.L. developed and performed the morphometric analyses. F.R., N.G. and J.L. provided MRI images and provided feedback on the manuscript. T.T. and L.M. coordinated the project.

Corresponding authors

Correspondence to Tuomas Tallinen or L. Mahadevan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information (PDF 1271 kb)

Supplementary Movie 1

Supplementary Movie (MOV 1114 kb)

Supplementary Movie 2

Supplementary Movie (MOV 1064 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tallinen, T., Chung, J., Rousseau, F. et al. On the growth and form of cortical convolutions. Nature Phys 12, 588–593 (2016). https://doi.org/10.1038/nphys3632

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3632

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing