Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Critical spin fluctuations and the origin of nematic order in Ba(Fe1−xCox)2As2

Abstract

Nematic fluctuations and order play a prominent role in material classes such as the cuprates1, some ruthenates2 or the iron-based compounds3,4,5,6 and may be interrelated with superconductivity7,8,9,10,11. In iron-based compounds12 signatures of nematicity have been observed in a variety of experiments. However, the fundamental question as to the relevance of the related spin13, charge9,14 or orbital8,15,16 fluctuations remains open. Here, we use inelastic light (Raman) scattering and study Ba(Fe1−xCox)2As2 (0 ≤ x ≤ 0.085) for getting direct access to nematicity and the underlying critical fluctuations with finite characteristic wavelengths17,18,19,20,21. We show that the response from fluctuations appears only in B1g (x2y2) symmetry (1 Fe unit cell). The scattering amplitude increases towards the structural transition at Ts but vanishes only below the magnetic ordering transition at TSDW < Ts, suggesting a magnetic origin of the fluctuations. The theoretical analysis explains the selection rules and the temperature dependence of the fluctuation response. These results make magnetism the favourite candidate for driving the series of transitions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Raman results of Ba(Fe0.975Co0.025)2As2.
Figure 2: Fluctuation contribution to the Raman response of Ba(Fe0.975Co0.025)2As2.
Figure 3: Higher-order Aslamazov–Larkin diagrams for interacting fluctuations.
Figure 4: Temperature dependence of the initial slope of the fluctuation response.
Figure 5: Phase diagram of Ba(Fe1−xCox)2As2.

Similar content being viewed by others

References

  1. Ando, Y., Segawa, K., Komiya, S. & Lavrov, A. N. Electrical resistivity anisotropy from self-organized one dimensionality in high-temperature superconductors. Phys. Rev. Lett. 88, 137005 (2002).

    Article  ADS  Google Scholar 

  2. Borzi, R. A. et al. Formation of a nematic fluid at high fields in Sr3Ru2O7 . Science 315, 214–217 (2007).

    Article  ADS  Google Scholar 

  3. Chu, J.-H. et al. In-plane resistivity anisotropy in an underdoped iron arsenide superconductor. Science 329, 824–826 (2010).

    Article  ADS  Google Scholar 

  4. Chu, J.-H., Kuo, H.-H., Analytis, J. G. & Fisher, I. R. Divergent nematic susceptibility in an iron arsenide superconductor. Science 337, 710–712 (2012).

    Article  ADS  Google Scholar 

  5. Fernandes, R. M., Chubukov, A. V. & Schmalian, J. What drives nematic order in iron-based superconductors? Nature Phys. 10, 97–104 (2014).

    Article  ADS  Google Scholar 

  6. Kuo, H.-H., Chu, J.-H., Kivelson, S. A. & Fisher, I. R. Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors. Preprint at http://arXiv.org/abs/1503.00402 (2015).

  7. Lederer, S., Schattner, Y., Berg, E. & Kivelson, S. A. Enhancement of superconductivity near a nematic quantum critical point. Phys. Rev. Lett. 114, 097001 (2015).

    Article  ADS  Google Scholar 

  8. Baek, S.-H. et al. Orbital-driven nematicity in FeSe. Nature Mater. 14, 210–214 (2014).

    Article  ADS  Google Scholar 

  9. Thorsmølle, V. K. et al. Critical charge fluctuations in iron pnictide superconductors. Phys. Rev. Lett. Preprint at http://arXiv.org/abs/1410.6456 (2014).

  10. Gallais, Y., Paul, I., Chauviere, L. & Schmalian, J. Nematic resonance in the Raman response of iron-based superconductors. Preprint at http://arXiv.org/abs/1504.04570 (2015).

  11. Capati, M. et al. Electronic polymers and soft-matter-like broken symmetries in underdoped cuprates. Nature Commun. 6, 7691 (2015).

    Article  ADS  Google Scholar 

  12. Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Communication iron-based layered superconductor La[O1−x F x ]FeAs (x = 0.05–0.12) with T c = 26 K. J. Am. Chem. Soc. 130, 3296 (2008).

    Article  Google Scholar 

  13. Fernandes, R. M., Chubukov, A. V., Knolle, J., Eremin, I. & Schmalian, J. Preemptive nematic order, pseudogap, and orbital order in the iron pnictides. Phys. Rev. B 85, 024534 (2012).

    Article  ADS  Google Scholar 

  14. Gallais, Y. et al. Observation of incipient charge nematicity in Ba(Fe1−x Co x )2As2 . Phys. Rev. Lett. 111, 267001 (2013).

    Article  ADS  Google Scholar 

  15. Kontani, H., Saito, T. & Onari, S. Origin of orthorhombic transition, magnetic transition, and shear-modulus softening in iron pnictide superconductors: analysis based on the orbital fluctuations theory. Phys. Rev. B 84, 024528 (2011).

    Article  ADS  Google Scholar 

  16. Kontani, H. & Yamakawa, Y. Linear response theory for shear modulus C 66 and Raman quadrupole susceptibility: evidence for nematic orbital fluctuations in Fe-based superconductors. Phys. Rev. Lett. 113, 047001 (2014).

    Article  ADS  Google Scholar 

  17. Caprara, S., Di Castro, C., Grilli, M. & Suppa, D. Charge-fluctuation contribution to the Raman response in superconducting cuprates. Phys. Rev. Lett. 95, 117004 (2005).

    Article  ADS  Google Scholar 

  18. Caprara, S. et al. Signatures of nematic quantum critical fluctuations in the Raman spectra of lightly doped cuprates. Phys. Rev. B 91, 205115 (2015).

    Article  ADS  Google Scholar 

  19. Khodas, M. & Levchenko, A. Raman scattering as a probe of nematic correlations. Phys. Rev. B 91, 235119 (2015).

    Article  ADS  Google Scholar 

  20. Karahasanovic, U. et al. Manifestation of nematic degrees of freedom in the Raman response function of iron pnictides. Phys. Rev. B 92, 075134 (2015).

    Article  ADS  Google Scholar 

  21. Yamase, H. & Zeyher, R. Spin nematic fluctuations near a spin-density-wave phase. New J. Phys. 17, 073030 (2015).

    Article  ADS  Google Scholar 

  22. Chu, J.-H., Analytis, J. G., Kucharczyk, C. & Fisher, I. R. Determination of the phase diagram of the electron-doped superconductor Ba(Fe1−x Co x )2As2 . Phys. Rev. B 79, 014506 (2009).

    Article  ADS  Google Scholar 

  23. Yoshizawa, M. et al. Structural quantum criticality and superconductivity in iron-based superconductor Ba(Fe1−x Co x )2As2 . J. Phys. Soc. Jpn 81, 024604 (2012).

    Article  ADS  Google Scholar 

  24. Böhmer, A. E. et al. Nematic susceptibility of hole-doped and electron-doped BaFe2As2 iron-based superconductors from shear modulus measurements. Phys. Rev. Lett. 112, 047001 (2014).

    Article  ADS  Google Scholar 

  25. Yi, M. et al. Symmetry-breaking orbital anisotropy observed for detwinned Ba(Fe1−x Co x )2As2 above the spin density wave transition. Proc. Natl Acad. Sci. USA 108, 6878–6883 (2011).

    Article  ADS  Google Scholar 

  26. Mirri, C. et al. Hysteretic behavior in the optical response of the underdoped Fe-arsenide Ba(Fe1−x Co x )2As2 in the electronic nematic phase. Phys. Rev. B 89, 060501 (2014).

    Article  ADS  Google Scholar 

  27. Lee, W.-C., Zhang, S.-C. & Wu, C. Pairing state with a time-reversal symmetry breaking in FeAs-based superconductors. Phys. Rev. Lett. 102, 217002 (2009).

    Article  ADS  Google Scholar 

  28. Choi, K.-Y. et al. Self-energy effects and electron–phonon coupling in Fe–As superconductors. J. Phys. Condens. Matter 22, 115802 (2010).

    Article  ADS  Google Scholar 

  29. Mazin, I. I. et al. Pinpointing gap minima in Ba(Fe0.94Co0.06)2As2 via band-structure calculations and electronic Raman scattering. Phys. Rev. B 82, 180502 (2010).

    Article  ADS  Google Scholar 

  30. Muschler, B. et al. Electron interactions and charge ordering in CuO2 compounds. Eur. Phys. J. Spec. Top. 188, 131–152 (2010).

    Article  ADS  Google Scholar 

  31. Rotter, M., Tegel, M. & Johrendt, D. Superconductivity at 38 K in the iron arsenide (Ba1−x K x )Fe2As2 . Phys. Rev. Lett. 101, 107006 (2008).

    Article  ADS  Google Scholar 

  32. Devereaux, T. P. & Hackl, R. Inelastic light scattering from correlated electrons. Rev. Mod. Phys. 79, 175–233 (2007).

    Article  ADS  Google Scholar 

  33. Götze, W. & Wölfle, P. Homogeneous dynamical conductivity of simple metals. Phys. Rev. B 6, 1226–1238 (1972).

    Article  ADS  Google Scholar 

  34. Allen, J. W. & Mikkelsen, J. C. Optical properties of CrSb, MnSb, NiSb, and NiAs. Phys. Rev. B 15, 2952–2960 (1977).

    Article  ADS  Google Scholar 

  35. Opel, M. et al. Carrier relaxation, pseudogap, and superconducting gap in high-T c cuprates: a Raman scattering study. Phys. Rev. B 61, 9752–9774 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge useful discussions with T. P. Devereaux, Y. Gallais, S. A. Kivelson, B. Moritz and I. Paul. Financial support for the work came from the German Research Foundation DFG through the Priority Program SPP 1458 (project nos HA 2071/7 and SCHM 1035/5), from the Bavarian Californian Technology Center BaCaTeC (project no. A5 [2012-2]), and from the Transregional Collaborative Research Center TRR 80. U.K. and J.S. were supported by the Helmholtz Association, through the Helmholtz postdoctoral grant PD-075 ‘Unconventional order and superconductivity in pnictides’. R.H. thanks the Stanford Institute for Materials and Energy Sciences (SIMES) at Stanford University and SLAC National Accelerator Laboratory for hospitality. Work in the SIMES at Stanford University and SLAC was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract No. DE-AC02-76SF00515.

Author information

Authors and Affiliations

Authors

Contributions

F.K., T.B., B.M., A.B. and D.J. contributed approximately equally to the experiments. U.K., J.S., S.C., M.G. and C.D.C. developed the theory. J.-H.C., J.G.A. and I.R.F. prepared and characterized the samples. F.K., T.B. and R.H. conceived the study. U.K., F.K., T.B. and R.H. prepared the manuscript.

Corresponding author

Correspondence to R. Hackl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2478 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kretzschmar, F., Böhm, T., Karahasanović, U. et al. Critical spin fluctuations and the origin of nematic order in Ba(Fe1−xCox)2As2. Nature Phys 12, 560–563 (2016). https://doi.org/10.1038/nphys3634

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3634

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing