Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electron viscosity, current vortices and negative nonlocal resistance in graphene

Abstract

Quantum-critical strongly correlated electron systems are predicted to feature universal collision-dominated transport resembling that of viscous fluids1,2,3,4. However, investigation of these phenomena has been hampered by the lack of known macroscopic signatures of electron viscosity5,6,7,8,9. Here we identify vorticity as such a signature and link it with a readily verifiable striking macroscopic d.c. transport behaviour. Produced by the viscous flow, vorticity can drive electric current against an applied field, resulting in a negative nonlocal voltage. We argue that the latter may play the same role for the viscous regime as zero electrical resistance does for superconductivity. Besides offering a diagnostic that distinguishes viscous transport from ohmic currents, the sign-changing electrical response affords a robust tool for directly measuring the viscosity-to-resistivity ratio. A strongly interacting electron–hole plasma in high-mobility graphene10,11,12 affords a unique link between quantum-critical electron transport and the wealth of fluid mechanics phenomena.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Current streamlines and potential map for viscous and ohmic flows.
Figure 2: Nonlocal response for different resistivity-to-viscosity ratios ρ/η.
Figure 3: Heating patterns for viscous and ohmic flows.

Similar content being viewed by others

References

  1. Damle, K. & Sachdev, S. Nonzero-temperature transport near quantum critical points. Phys. Rev. B 56, 8714–8733 (1997).

    Article  ADS  Google Scholar 

  2. Kovtun, P. K., Son, D. T. & Starinets, A. O. Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 94, 111601 (2005).

    Article  ADS  Google Scholar 

  3. Son, D. T. Vanishing bulk viscosities and conformal invariance of the unitary Fermi gas. Phys. Rev. Lett. 98, 020604 (2007).

    Article  ADS  Google Scholar 

  4. Karsch, K., Kharzeev, D. & Tuchin, K. Universal properties of bulk viscosity near the QCD phase transition. Phys. Lett. B 663, 217–221 (2008).

    Article  ADS  Google Scholar 

  5. Müller, M., Schmalian, J. & Fritz, L. Graphene: a nearly perfect fluid. Phys. Rev. Lett. 103, 025301 (2009).

    Article  ADS  Google Scholar 

  6. Mendoza, M., Herrmann, H. J. & Succi, S. Preturbulent regimes in graphene flow. Phys. Rev. Lett. 106, 156601 (2011).

    Article  ADS  Google Scholar 

  7. Andreev, A. V., Kivelson, S. A. & Spivak, B. Hydrodynamic description of transport in strongly correlated electron systems. Phys. Rev. Lett. 106, 256804 (2011).

    Article  ADS  Google Scholar 

  8. Forcella, D., Zaanen, J., Valentinis, D. & van der Marel, D. Electromagnetic properties of viscous charged fluids. Phys. Rev. B 90, 035143 (2014).

    Article  ADS  Google Scholar 

  9. Tomadin, A., Vignale, G. & Polini, M. Corbino disk viscometer for 2D quantum electron liquids. Phys. Rev. Lett. 113, 235901 (2014).

    Article  ADS  Google Scholar 

  10. González, J., Guinea, F. & Vozmediano, M. A. H. Non-Fermi liquid behavior of electrons in the half-filled honeycomb lattice (A renormalization group approach). Nucl. Phys. B 424, 595–618 (1994).

    Article  ADS  Google Scholar 

  11. Sheehy, D. E. & Schmalian, J. Quantum critical scaling in graphene. Phys. Rev. Lett. 99, 226803 (2007).

    Article  ADS  Google Scholar 

  12. Fritz, L., Schmalian, J., Müller, M. & Sachdev, S. Quantum critical transport in clean graphene. Phys. Rev. B 78, 085416 (2008).

    Article  ADS  Google Scholar 

  13. Son, D. T. & Starinets, A. O. Viscosity, black holes, and quantum field theory. Annu. Rev. Nucl. Part. Sci. 57, 95118 (2007).

    Article  Google Scholar 

  14. Sachdev, S. & Muller, M. Quantum criticality and black holes. J. Phys. Condens. Matter 21, 164216 (2009).

    Article  ADS  Google Scholar 

  15. Yoo, M. J. et al. Scanning single-electron transistor microscopy: imaging individual charges. Science 276, 579–582 (1997).

    Article  Google Scholar 

  16. de Jong, M. J. M. & Molenkamp, L. W. Hydrodynamic electron flow in high-mobility wires. Phys. Rev. B 51, 13389–13402 (1985).

    Article  ADS  Google Scholar 

  17. Jaggi, R. Electron-fluid model for the dc size effect. J. Appl. Phys. 69, 816–820 (1991).

    Article  ADS  Google Scholar 

  18. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Pergamon Press, 1981).

    Google Scholar 

  19. Gurzhi, R. N. Hydrodynamic effects in solids at low temperature. Sov. Phys. Usp. 11, 255 (1968); http://go.nature.com/Lg1Zp1

    Article  ADS  Google Scholar 

  20. Davison, R. A., Schalm, K. & Zaanen, J. Holographic duality and the resistivity of strange metals. Phys. Rev. B 89, 245116 (2014).

    Article  ADS  Google Scholar 

  21. Principi, A., Vignale, G., Carrega, M. & Polini, M. Bulk and shear viscosities of the 2D electron liquid in a doped graphene sheet. Preprint at http://arXiv.org/abs/1506.06030 (2015).

  22. Cortijo, A., Ferreirós, Y., Landsteiner, K. & Vozmediano, M. A. H. Hall viscosity from elastic gauge fields in Dirac crystals. Phys. Rev. Lett. 115, 177202 (2015).

    Article  ADS  Google Scholar 

  23. Kashuba, A. B. Conductivity of defectless graphene. Phys. Rev. B 78, 085415 (2008).

    Article  ADS  Google Scholar 

  24. Narozhny, B. N., Gornyi, I. V., Titov, M., Schütt, M. & Mirlin, A. D. Hydrodynamics in graphene: Linear-response transport. Phys. Rev. B 91, 035414 (2015).

    Article  ADS  Google Scholar 

  25. Abanin, D. A., Gorbachev, R. V., Novoselov, K. S., Geim, A. K. & Levitov, L. S. Giant spin-Hall effect induced by the Zeeman interaction in graphene. Phys. Rev. Lett. 107, 096601 (2011).

    Article  ADS  Google Scholar 

  26. Abanin, D. A. et al. Giant nonlocality near the Dirac point in graphene. Science 332, 328330 (2011).

    Article  Google Scholar 

  27. Gorbachev, R. V. et al. Detecting topological currents in graphene superlattices. Science 346, 448–451 (2014).

    Article  ADS  Google Scholar 

  28. Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).

    Article  ADS  Google Scholar 

  29. Taychatanapat, T., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Electrically tunable transverse magnetic focusing in graphene. Nature Phys. 9, 225–229 (2013).

    Article  ADS  Google Scholar 

  30. Kucsko, G. et al. Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013).

    Article  ADS  Google Scholar 

  31. Bandurin, D. A. et al. Negative local resistance due to viscous electron backflow in graphene. Preprint at http://arxiv.org/abs/1509.04165 (2015).

  32. Torre, I., Tomadin, A., Geim, A. K. & Polini, M. Nonlocal transport and the hydrodynamic shear viscosity in graphene. Phys. Rev. B 92, 165433 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support of the Center for Integrated Quantum Materials (CIQM) under NSF award 1231319 (L.L.), partial support by the US Army Research Laboratory and the US Army Research Office through the Institute for Soldier Nanotechnologies, under contract number W911NF-13-D-0001 (L.L.), MISTI MIT-Israel Seed Fund (L.L. and G.F.), the Israeli Science Foundation (grant 882) (G.F.) and the Russian Science Foundation (project 14-22-00259) (G.F.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of this work.

Corresponding authors

Correspondence to Leonid Levitov or Gregory Falkovich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 941 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levitov, L., Falkovich, G. Electron viscosity, current vortices and negative nonlocal resistance in graphene. Nature Phys 12, 672–676 (2016). https://doi.org/10.1038/nphys3667

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3667

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing