Abstract
Quantum-critical strongly correlated electron systems are predicted to feature universal collision-dominated transport resembling that of viscous fluids1,2,3,4. However, investigation of these phenomena has been hampered by the lack of known macroscopic signatures of electron viscosity5,6,7,8,9. Here we identify vorticity as such a signature and link it with a readily verifiable striking macroscopic d.c. transport behaviour. Produced by the viscous flow, vorticity can drive electric current against an applied field, resulting in a negative nonlocal voltage. We argue that the latter may play the same role for the viscous regime as zero electrical resistance does for superconductivity. Besides offering a diagnostic that distinguishes viscous transport from ohmic currents, the sign-changing electrical response affords a robust tool for directly measuring the viscosity-to-resistivity ratio. A strongly interacting electron–hole plasma in high-mobility graphene10,11,12 affords a unique link between quantum-critical electron transport and the wealth of fluid mechanics phenomena.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Damle, K. & Sachdev, S. Nonzero-temperature transport near quantum critical points. Phys. Rev. B 56, 8714–8733 (1997).
Kovtun, P. K., Son, D. T. & Starinets, A. O. Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 94, 111601 (2005).
Son, D. T. Vanishing bulk viscosities and conformal invariance of the unitary Fermi gas. Phys. Rev. Lett. 98, 020604 (2007).
Karsch, K., Kharzeev, D. & Tuchin, K. Universal properties of bulk viscosity near the QCD phase transition. Phys. Lett. B 663, 217–221 (2008).
Müller, M., Schmalian, J. & Fritz, L. Graphene: a nearly perfect fluid. Phys. Rev. Lett. 103, 025301 (2009).
Mendoza, M., Herrmann, H. J. & Succi, S. Preturbulent regimes in graphene flow. Phys. Rev. Lett. 106, 156601 (2011).
Andreev, A. V., Kivelson, S. A. & Spivak, B. Hydrodynamic description of transport in strongly correlated electron systems. Phys. Rev. Lett. 106, 256804 (2011).
Forcella, D., Zaanen, J., Valentinis, D. & van der Marel, D. Electromagnetic properties of viscous charged fluids. Phys. Rev. B 90, 035143 (2014).
Tomadin, A., Vignale, G. & Polini, M. Corbino disk viscometer for 2D quantum electron liquids. Phys. Rev. Lett. 113, 235901 (2014).
González, J., Guinea, F. & Vozmediano, M. A. H. Non-Fermi liquid behavior of electrons in the half-filled honeycomb lattice (A renormalization group approach). Nucl. Phys. B 424, 595–618 (1994).
Sheehy, D. E. & Schmalian, J. Quantum critical scaling in graphene. Phys. Rev. Lett. 99, 226803 (2007).
Fritz, L., Schmalian, J., Müller, M. & Sachdev, S. Quantum critical transport in clean graphene. Phys. Rev. B 78, 085416 (2008).
Son, D. T. & Starinets, A. O. Viscosity, black holes, and quantum field theory. Annu. Rev. Nucl. Part. Sci. 57, 95118 (2007).
Sachdev, S. & Muller, M. Quantum criticality and black holes. J. Phys. Condens. Matter 21, 164216 (2009).
Yoo, M. J. et al. Scanning single-electron transistor microscopy: imaging individual charges. Science 276, 579–582 (1997).
de Jong, M. J. M. & Molenkamp, L. W. Hydrodynamic electron flow in high-mobility wires. Phys. Rev. B 51, 13389–13402 (1985).
Jaggi, R. Electron-fluid model for the dc size effect. J. Appl. Phys. 69, 816–820 (1991).
Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Pergamon Press, 1981).
Gurzhi, R. N. Hydrodynamic effects in solids at low temperature. Sov. Phys. Usp. 11, 255 (1968); http://go.nature.com/Lg1Zp1
Davison, R. A., Schalm, K. & Zaanen, J. Holographic duality and the resistivity of strange metals. Phys. Rev. B 89, 245116 (2014).
Principi, A., Vignale, G., Carrega, M. & Polini, M. Bulk and shear viscosities of the 2D electron liquid in a doped graphene sheet. Preprint at http://arXiv.org/abs/1506.06030 (2015).
Cortijo, A., Ferreirós, Y., Landsteiner, K. & Vozmediano, M. A. H. Hall viscosity from elastic gauge fields in Dirac crystals. Phys. Rev. Lett. 115, 177202 (2015).
Kashuba, A. B. Conductivity of defectless graphene. Phys. Rev. B 78, 085415 (2008).
Narozhny, B. N., Gornyi, I. V., Titov, M., Schütt, M. & Mirlin, A. D. Hydrodynamics in graphene: Linear-response transport. Phys. Rev. B 91, 035414 (2015).
Abanin, D. A., Gorbachev, R. V., Novoselov, K. S., Geim, A. K. & Levitov, L. S. Giant spin-Hall effect induced by the Zeeman interaction in graphene. Phys. Rev. Lett. 107, 096601 (2011).
Abanin, D. A. et al. Giant nonlocality near the Dirac point in graphene. Science 332, 328330 (2011).
Gorbachev, R. V. et al. Detecting topological currents in graphene superlattices. Science 346, 448–451 (2014).
Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).
Taychatanapat, T., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Electrically tunable transverse magnetic focusing in graphene. Nature Phys. 9, 225–229 (2013).
Kucsko, G. et al. Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013).
Bandurin, D. A. et al. Negative local resistance due to viscous electron backflow in graphene. Preprint at http://arxiv.org/abs/1509.04165 (2015).
Torre, I., Tomadin, A., Geim, A. K. & Polini, M. Nonlocal transport and the hydrodynamic shear viscosity in graphene. Phys. Rev. B 92, 165433 (2015).
Acknowledgements
We acknowledge support of the Center for Integrated Quantum Materials (CIQM) under NSF award 1231319 (L.L.), partial support by the US Army Research Laboratory and the US Army Research Office through the Institute for Soldier Nanotechnologies, under contract number W911NF-13-D-0001 (L.L.), MISTI MIT-Israel Seed Fund (L.L. and G.F.), the Israeli Science Foundation (grant 882) (G.F.) and the Russian Science Foundation (project 14-22-00259) (G.F.).
Author information
Authors and Affiliations
Contributions
All authors contributed to all aspects of this work.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 941 kb)
Rights and permissions
About this article
Cite this article
Levitov, L., Falkovich, G. Electron viscosity, current vortices and negative nonlocal resistance in graphene. Nature Phys 12, 672–676 (2016). https://doi.org/10.1038/nphys3667
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys3667
This article is cited by
-
Charge transport and hydrodynamics in materials
Nature Reviews Materials (2023)
-
The theory of generalised hydrodynamics for the one-dimensional Bose gas
AAPPS Bulletin (2023)
-
Perspective: nanoscale electric sensing and imaging based on quantum sensors
Quantum Frontiers (2023)
-
Direct observation of vortices in an electron fluid
Nature (2022)
-
Imaging hydrodynamic electrons flowing without Landauer–Sharvin resistance
Nature (2022)