Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct measurement of exciton valley coherence in monolayer WSe2

Abstract

In crystals, energy band extrema in momentum space can be identified by a valley index. The internal quantum degree of freedom associated with valley pseudospin indices can act as a useful information carrier, analogous to electronic charge or spin1,2,3,4. Interest in valleytronics has been revived in recent years following the discovery of atomically thin materials such as graphene and transition metal dichalcogenides5,6,7. However, the valley coherence time—a crucial quantity for valley pseudospin manipulation—is difficult to directly probe. In this work, we use two-dimensional coherent spectroscopy to resonantly generate and detect valley coherence of excitons (Coulomb-bound electron–hole pairs) in monolayer WSe2 (refs 8,9). The imposed valley coherence persists for approximately one hundred femtoseconds. We propose that the electron–hole exchange interaction provides an important decoherence mechanism in addition to exciton population recombination. This work provides critical insight into the requirements and strategies for optical manipulation of the valley pseudospin for future valleytronics applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coupled spin and valley degrees of freedom at the band extrema.
Figure 2: Ultrafast resonant generation and detection of exciton valley coherence in monolayer TMDs.
Figure 3: Exciton population relaxation and valley coherence dynamics measured with 2DCS.
Figure 4: Theory of valley decoherence.

Similar content being viewed by others

References

  1. Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. Valleytronics. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    Article  ADS  Google Scholar 

  2. Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other Group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  ADS  Google Scholar 

  3. Yu, H., Liu, G.-B., Gong, P., Xu, X. & Yao, W. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides. Nature Commun. 5, 3876 (2014).

    Article  ADS  Google Scholar 

  4. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nature Phys. 10, 343–350 (2014).

    Article  ADS  Google Scholar 

  5. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  ADS  Google Scholar 

  6. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  ADS  Google Scholar 

  7. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  ADS  Google Scholar 

  8. Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2 . Nature Nanotech. 8, 634–638 (2013).

    Article  ADS  Google Scholar 

  9. Wang, G. et al. Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances. Phys. Rev. Lett. 114, 097403 (2015).

    Article  ADS  Google Scholar 

  10. Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2 . Phys. Rev. Lett. 113, 076802 (2014).

    Article  ADS  Google Scholar 

  11. Zhu, B., Chen, X. & Cui, X. Exciton binding energy of monolayer WS2 . Sci. Rep. 5, 9218 (2015).

    Article  ADS  Google Scholar 

  12. Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nature Mater. 13, 1091–1095 (2014).

    Article  ADS  Google Scholar 

  13. Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Commun. 3, 887 (2012).

    Article  ADS  Google Scholar 

  14. Korn, T., Heydrich, S., Hirmer, M., Schmutzler, J. & Schuller, C. Low-temperature photocarrier dynamics in monolayer MoS2 . Appl. Phys. Lett. 99, 102109 (2011).

    Article  ADS  Google Scholar 

  15. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

    Article  ADS  Google Scholar 

  16. Shi, H. et al. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 7, 1072–1080 (2013).

    Article  Google Scholar 

  17. Wang, G. et al. Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2 . Phys. Rev. B 90, 075413 (2014).

    Article  ADS  Google Scholar 

  18. Wang, Q. et al. Valley carrier dynamics in monolayer molybdenum disulfide from helicity-resolved ultrafast pump–probe spectroscopy. ACS Nano 7, 11087–11093 (2013).

    Article  Google Scholar 

  19. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

    Article  ADS  Google Scholar 

  20. Lagarde, D. et al. Carrier and polarization dynamics in monolayer MoS2 . Phys. Rev. Lett. 112, 047401 (2014).

    Article  ADS  Google Scholar 

  21. Mai, C. et al. Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2 . Nano Lett. 14, 202–206 (2014).

    Article  ADS  Google Scholar 

  22. Yu, H., Cui, X., Xu, X. & Yao, W. Valley excitons in two-dimensional semiconductors. Natl Sci. Rev. 2, 57–70 (2015).

    Article  Google Scholar 

  23. Cundiff, S. T. et al. Optical 2-D Fourier transform spectroscopy of excitons in semiconductor nanostructures. IEEE J. Sel. Top. Quantum Electron. 18, 318–328 (2012).

    Article  ADS  Google Scholar 

  24. Maialle, M. Z., de Andrada E Silva, E. A. & Sham, L. J. Exciton spin dynamics in quantum wells. Phys. Rev. B 47, 15776–15788 (1993).

    Article  ADS  Google Scholar 

  25. Vinattieri, A. et al. Exciton dynamics in GaAs quantum wells under resonant excitation. Phys. Rev. B 50, 10868–10879 (1994).

    Article  ADS  Google Scholar 

  26. Yu, T. & Wu, M. W. Valley depolarization due to intervalley and intravalley electron–hole exchange interactions in monolayer MoS2 . Phys. Rev. B 89, 205303 (2014).

    Article  ADS  Google Scholar 

  27. Huang, J.-K. et al. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 8, 923–930 (2013).

    Article  Google Scholar 

  28. Boller, K.-J., Imamoglu, A. & Harris, S. E. Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593–2596 (1991).

    Article  ADS  Google Scholar 

  29. Scully, M. O., Zhu, S.-Y. & Gavrielides, A. Degenerate quantum-beat laser: lasing without inversion and inversion without lasing. Phys. Rev. Lett. 62, 2813–2816 (1989).

    Article  ADS  Google Scholar 

  30. Zibrov, A. S. et al. Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb. Phys. Rev. Lett. 75, 1499–1502 (1995).

    Article  ADS  Google Scholar 

  31. Gobel, E. O. et al. Quantum beats of excitons in quantum wells. Phys. Rev. Lett. 64, 1801–1804 (1990).

    Article  ADS  Google Scholar 

  32. Lenihan, A. S., Gurudev Dutt, M. V., Steel, D. G., Ghosh, S. & Bhattacharya, P. K. Raman coherence beats from entangled polarization eigenstates in InAs quantum dots. Phys. Rev. Lett. 88, 223601 (2002).

    Article  ADS  Google Scholar 

  33. Bristow, A. D. et al. A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy. Rev. Sci. Instrum. 80, 073108 (2009).

    Article  ADS  Google Scholar 

  34. Moody, G. et al. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nature Commun. 6, 8315 (2015).

    Article  ADS  Google Scholar 

  35. Siemens, M. E., Moody, G., Li, H., Bristow, A. D. & Cundiff, S. T. Resonance lineshapes in two-dimensional Fourier transform spectroscopy. Opt. Express 18, 17699–17708 (2010).

    Article  ADS  Google Scholar 

  36. Wu, F., Qu, F. & MacDonald, A. H. Exciton band structure in monolayer MoS2 . Phys. Rev. B 91, 075310 (2015).

    Article  ADS  Google Scholar 

  37. Oxtoby, D. W. Hydrodynamic theory for vibrational dephasing in liquids. J. Chem. Phys. 70, 2605–2610 (1979).

    Article  ADS  Google Scholar 

  38. Berthelot, A. et al. Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot. Nature Phys. 2, 759–764 (2006).

    Article  ADS  Google Scholar 

  39. Li, P., Li, J., Qing, L., Dery, H. & Appelbaum, I. Anisotropy-driven spin relaxation in germanium. Phys. Rev. Lett. 111, 257204 (2013).

    Article  ADS  Google Scholar 

  40. Yang, L. et al. Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2 . Nature Phys. 11, 830–834 (2015).

    Article  ADS  Google Scholar 

  41. Van Tuan, D., Ortmann, F., Soriano, D., Valenzuela, S. O. & Roche, S. Pseudospin-driven spin relaxation mechanism in graphene. Nature Phys. 10, 857–863 (2014).

    Article  ADS  Google Scholar 

  42. Palummo, M., Bernardi, M. & Grossman, J. C. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. Nano Lett. 15, 2794–2800 (2015).

    Article  ADS  Google Scholar 

  43. Srivastava, A. et al. Optically active quantum dots in monolayer WSe2 . Nature Nanotech. 10, 491–496 (2015).

    Article  ADS  Google Scholar 

  44. Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nature Nanotech. 10, 503–506 (2015).

    Article  ADS  Google Scholar 

  45. Rivera, P. et al. Observation of long-live interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nature Commun. 6, 6242 (2015).

    Article  ADS  Google Scholar 

  46. Liu, X. et al. Strong light-matter coupling in two-dimensional atomic crystals. Nature Photon. 9, 30–34 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The theoretical and experimental collaboration is made possible by SHINES, an Energy Frontier Research Center funded by the US Department of Energy (DoE), Office of Science, Basic Energy Science (BES) under award # DE-SC0012670. K.H., F.W., L.X., X.L. and A.H.M. have all received support from SHINES. Optical spectroscopy studies performed by K.H., C.K.D., L.S. and X.L. have been partially supported by NSF DMR-1306878 and Welch Foundation F-1662. A.H.M. also acknowledges support from Welch Foundation F-1473. L.J.L. is grateful for support from KAUST Saudi Arabia, Academia Sinica Taiwan, and AOARD FA23861510001 USA. C.-H.C. is grateful for support from the Ministry of Science and Technology Taiwan (MOST 104-2218-E-035-010 and 104-2628-E-035-002-MY3).

Author information

Authors and Affiliations

Authors

Contributions

K.H. and G.M. contributed equally to this work. G.M. and X.L. conceived the concept. K.H. led the experimental effort. All co-authors at the University of Texas ran the experiments, acquired the data, and analysed the results. C.-H.C., M.-Y.L. and L.-J.L. provided the samples. F.W. and A.H.M. performed the theoretical studies. G.M., F.W. and X.L. wrote the manuscript. All authors discussed the results and commented on the manuscript at all stages.

Corresponding author

Correspondence to Xiaoqin Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1070 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, K., Moody, G., Wu, F. et al. Direct measurement of exciton valley coherence in monolayer WSe2. Nature Phys 12, 677–682 (2016). https://doi.org/10.1038/nphys3674

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3674

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing