Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Few-second-long correlation times in a quantum dot nuclear spin bath probed by frequency-comb nuclear magnetic resonance spectroscopy

Abstract

One of the key challenges in spectroscopy is the inhomogeneous broadening that masks the homogeneous spectral lineshape and the underlying coherent dynamics. Techniques such as four-wave mixing and spectral hole-burning are used in optical spectroscopy1,2,3, and spin-echo4 in nuclear magnetic resonance (NMR). However, the high-power pulses used in spin-echo and other sequences4,5,6,7,8 often create spurious dynamics7,8 obscuring the subtle spin correlations important for quantum technologies5,6,9,10,11,12,13,14,15,16,17. Here we develop NMR techniques to probe the correlation times of the fluctuations in a nuclear spin bath of individual quantum dots, using frequency-comb excitation, allowing for the homogeneous NMR lineshapes to be measured without high-power pulses. We find nuclear spin correlation times exceeding one second in self-assembled InGaAs quantum dots—four orders of magnitude longer than in strain-free III–V semiconductors. This observed freezing of the nuclear spin fluctuations suggests ways of designing quantum dot spin qubits with a well-understood, highly stable nuclear spin bath.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Frequency-comb technique for homogeneous NMR lineshape measurement.
Figure 2: Measurement of the homogeneous NMR lineshape in self-assembled quantum dots using frequency-comb excitation.
Figure 3: Homogeneous lineshape modelling.
Figure 4: Probing the correlation times of the nuclear spin bath fluctuation.

Similar content being viewed by others

References

  1. Borri, P. et al. Ultralong dephasing time in InGaAs quantum dots. Phys. Rev. Lett. 87, 157401 (2001).

    Article  ADS  Google Scholar 

  2. Volker, S. Hole-burning spectroscopy. Annu. Rev. Phys. Chem. 40, 499–530 (1989).

    Article  ADS  Google Scholar 

  3. Yang, L. et al. Two-colour spin noise spectroscopy and fluctuation correlations reveal homogeneous linewidths within quantum-dot ensembles. Nature Commun. 5, 5949 (2014).

    Google Scholar 

  4. Hahn, E. L. Spin echoes. Phys. Rev. 80, 580–594 (1950).

    Article  ADS  Google Scholar 

  5. Biercuk, M. J. et al. Optimized dynamical decoupling in a model quantum memory. Nature 458, 996–1000 (2009).

    Article  ADS  Google Scholar 

  6. Bar-Gill, N. et al. Suppression of spin-bath dynamics for improved coherence of multi-spin-qubit systems. Nature Commun. 3, 858 (2012).

    Article  ADS  Google Scholar 

  7. Tyryshkin, A. M. et al. Electron spin coherence exceeding seconds in high-purity silicon. Nature Mater. 11, 143–147 (2012).

    Article  ADS  Google Scholar 

  8. Li, D., Dementyev, A. E., Dong, Y., Ramos, R. G. & Barrett, S. E. Generating unexpected spin echoes in dipolar solids with π pulses. Phys. Rev. Lett. 98, 190401 (2007).

    Article  ADS  Google Scholar 

  9. Merkulov, I. A., Efros, A. L. & Rosen, M. Electron spin relaxation by nuclei in semiconductor quantum dots. Phys. Rev. B 65, 205309 (2002).

    Article  ADS  Google Scholar 

  10. de Sousa, R. & Das Sarma, S. Theory of nuclear-induced spectral diffusion: spin decoherence of phosphorus donors in Si and GaAs quantum dots. Phys. Rev. B 68, 115322 (2003).

    Article  ADS  Google Scholar 

  11. Yao, W., Liu, R.-B. & Sham, L. J. Theory of electron spin decoherence by interacting nuclear spins in a quantum dot. Phys. Rev. B 74, 195301 (2006).

    Article  ADS  Google Scholar 

  12. Bluhm, H. et al. Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs. Nature Phys. 7, 109–113 (2011).

    Article  ADS  Google Scholar 

  13. Press, D. et al. Ultrafast optical spin echo in a single quantum dot. Nature Photon. 4, 367–370 (2010).

    Article  ADS  Google Scholar 

  14. De Greve, K. et al. Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit. Nature Phys. 7, 872–878 (2011).

    Article  ADS  Google Scholar 

  15. Greilich, A., Carter, S. G., Kim, D., Bracker, A. S. & Gammon, D. Optical control of one and two hole spins in interacting quantum dots. Nature Photon. 5, 702–708 (2011).

    Article  ADS  Google Scholar 

  16. Hansom, J. et al. Environment-assisted quantum control of a solid-state spin via coherent dark states. Nature Phys. 10, 1745–2473 (2014).

    Article  Google Scholar 

  17. Urbaszek, B. et al. Nuclear spin physics in quantum dots: an optical investigation. Rev. Mod. Phys. 85, 79–133 (2013).

    Article  ADS  Google Scholar 

  18. Cai, J., Retzker, A., Jelezko, F. & Plenio, M. B. A large-scale quantum simulator on a diamond surface at room temperature. Nature Phys. 9, 168–173 (2013).

    Article  ADS  Google Scholar 

  19. de Sousa, R. & Das Sarma, S. Electron spin coherence in semiconductors: considerations for a spin-based solid-state quantum computer architecture. Phys. Rev. B 67, 033301 (2003).

    Article  ADS  Google Scholar 

  20. Chekhovich, E. A., Hopkinson, M., Skolnick, M. S. & Tartakovskii, A. I. Suppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain. Nature Commun. 6, 6348 (2015).

    Article  ADS  Google Scholar 

  21. Chekhovich, E. A. et al. Structural analysis of strained quantum dots using nuclear magnetic resonance. Nature Nanotech. 7, 646–650 (2012).

    Article  ADS  Google Scholar 

  22. Munsch, M. et al. Manipulation of the nuclear spin ensemble in a quantum dot with chirped magnetic resonance pulses. Nature Nanotech. 9, 671–675 (2014).

    Article  ADS  Google Scholar 

  23. Udem, T., Holzwarth, R. & Hansch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    Article  ADS  Google Scholar 

  24. Dzhioev, R. I. & Korenev, V. L. Stabilization of the electron-nuclear spin orientation in quantum dots by the nuclear quadrupole interaction. Phys. Rev. Lett. 99, 037401 (2007).

    Article  ADS  Google Scholar 

  25. Latta, C., Srivastava, A. & Imamoglu, A. Hyperfine interaction-dominated dynamics of nuclear spins in self-assembled InGaAs quantum dots. Phys. Rev. Lett. 107, 167401 (2011).

    Article  ADS  Google Scholar 

  26. Madhu, P. & Kumar, A. Direct cartesian-space solutions of generalized Bloch equations in the rotating frame. J. Magn. Reson. Ser. A 114, 201–211 (1995).

    Article  ADS  Google Scholar 

  27. Van Vleck, J. H. The dipolar broadening of magnetic resonance lines in crystals. Phys. Rev. 74, 1168–1183 (1948).

    Article  ADS  Google Scholar 

  28. Khaetskii, A. V., Loss, D. & Glazman, L. Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett. 88, 186802 (2002).

    Article  ADS  Google Scholar 

  29. Bechtold, A. et al. Three-stage decoherence dynamics of an electron spin qubit in an optically active quantum dot. Nature Phys 11, 1005–1008 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to K. V. Kavokin for useful discussions. This work has been supported by the EPSRC Programme Grant EP/J007544/1, ITN S3NANO. E.A.C. was supported by a University of Sheffield Vice-Chancellor’s Fellowship and a Royal Society University Research Fellowship. I.F. and D.A.R. were supported by EPSRC. Computational resources were provided in part by the University of Sheffield HPC cluster ‘Iceberg’.

Author information

Authors and Affiliations

Authors

Contributions

M.H., I.F., D.A.R., J.N., R.M.S., A.J.B. and A.J.S. developed and grew the samples. A.M.W. and E.A.C. conceived and designed the experiments and analysed the data. A.M.W. performed the experiments. E.A.C. performed the numerical modelling. E.A.C., A.M.W., M.S.S., A.I.T., G.B. and A.J.B. wrote the manuscript with input from all authors. E.A.C. coordinated the project.

Corresponding authors

Correspondence to A. M. Waeber or E. A. Chekhovich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 10477 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waeber, A., Hopkinson, M., Farrer, I. et al. Few-second-long correlation times in a quantum dot nuclear spin bath probed by frequency-comb nuclear magnetic resonance spectroscopy. Nature Phys 12, 688–693 (2016). https://doi.org/10.1038/nphys3686

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3686

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing