Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Probing the Bose glass–superfluid transition using quantum quenches of disorder

Abstract

The disordered Bose–Hubbard model—a paradigm for strongly correlated and disordered bosonic systems1—is central to our understanding of quantum phase transitions2. Despite extensive theoretical work on the disordered Bose–Hubbard model, little is known about the impact of temperature, the dynamical behaviour of quantum phases, and how equilibrium is affected during quantum phase transitions. These issues are critically important to applications such as quantum annealing3,4,5,6,7 and electronics based on quantum phase transitions8. Here, we use a quantum quench of disorder in an ultracold lattice gas to dynamically probe the superfluid–Bose glass quantum phase transition at non-zero temperature ( Fig. 1). By measuring excitations generated during the quench, we provide evidence for superfluid puddles in the Bose glass phase and produce a superfluid–Bose glass phase diagram consistent with completely constrained, finite temperature, and equilibrium quantum Monte Carlo simulations. The residual energy from the quench, which is an efficacy measure for optimization through quantum annealing, is unchanged for quench times spanning nearly a hundred tunnelling times.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quench through BF–SF QPT.
Figure 2: Sample experimental data and numerical results.
Figure 3: Phase boundary between SF and BG regimes.
Figure 4: Dependence of the residual energy on the quench time.

Similar content being viewed by others

References

  1. Fisher, M. P., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989).

    Article  ADS  Google Scholar 

  2. Sachdev, S. Quantum Phase Transitions 2nd edn (Cambridge Univ. Press, 2011).

    Book  Google Scholar 

  3. Santoro, G. E., Martonák, R., Tosatti, E. & Car, R. Theory of quantum annealing of an Ising spin glass. Science 295, 2427–2430 (2002).

    Article  ADS  Google Scholar 

  4. Santoro, G. E. & Tosatti, E. Optimization using quantum mechanics: quantum annealing through adiabatic evolution. J. Phys. A 39, R393 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  5. Bian, Z. et al. Discrete optimization using quantum annealing on sparse Ising models. Front. Phys. 2, 56 (2014).

    Article  Google Scholar 

  6. Das, A. & Chakrabarti, B. K. Colloquium: quantum annealing and analog quantum computation. Rev. Mod. Phys. 80, 1061–1081 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  7. Boixo, S. et al. Evidence for quantum annealing with more than one hundred qubits. Nature Phys. 10, 218–224 (2014).

    Article  ADS  Google Scholar 

  8. Yang, Z., Ko, C. & Ramanathan, S. Oxide electronics utilizing ultrafast metal-insulator transitions. Annu. Rev. Mater. Res. 41, 337–367 (2011).

    Article  ADS  Google Scholar 

  9. White, M. et al. Strongly interacting bosons in a disordered optical lattice. Phys. Rev. Lett. 102, 055301 (2009).

    Article  ADS  Google Scholar 

  10. Pollet, L. A review of Monte Carlo simulations for the Bose–Hubbard model with diagonal disorder. C.R. Phys. 14, 712–724 (2013).

    Article  ADS  Google Scholar 

  11. Yao, Z., da Costa, K. P. C., Kiselev, M. & Prokof’ev, N. Critical exponents of the superfluid–Bose-glass transition in three dimensions. Phys. Rev. Lett. 112, 225301 (2014).

    Article  ADS  Google Scholar 

  12. Gadway, B., Pertot, D., Reeves, J., Vogt, M. & Schneble, D. Glassy behavior in a binary atomic mixture. Phys. Rev. Lett. 107, 145306 (2011).

    Article  ADS  Google Scholar 

  13. Pasienski, M., McKay, D., White, M. & DeMarco, B. A disordered insulator in an optical lattice. Nature Phys. 6, 677–680 (2010).

    Article  ADS  Google Scholar 

  14. Fallani, L., Lye, J. E., Guarrera, V., Fort, C. & Inguscio, M. Ultracold atoms in a disordered crystal of light: towards a Bose glass. Phys. Rev. Lett. 98, 130404 (2007).

    Article  ADS  Google Scholar 

  15. D’Errico, C. et al. Observation of a disordered bosonic insulator from weak to strong interactions. Phys. Rev. Lett. 113, 095301 (2014).

    Article  ADS  Google Scholar 

  16. Zhou, S. Q. & Ceperley, D. M. Construction of localized wave functions for a disordered optical lattice and analysis of the resulting Hubbard model parameters. Phys. Rev. A 81, 013402 (2010).

    Article  ADS  Google Scholar 

  17. Chen, D., White, M., Borries, C. & DeMarco, B. Quantum quench of an atomic Mott insulator. Phys. Rev. Lett. 106, 235304 (2011).

    Article  ADS  Google Scholar 

  18. Scherer, D. R., Weiler, C. N., Neely, T. W. & Anderson, B. P. Vortex formation by merging of multiple trapped Bose–Einstein condensates. Phys. Rev. Lett. 98, 110402 (2007).

    Article  ADS  Google Scholar 

  19. Dziarmaga, J. Dynamics of a quantum phase transition and relaxation to a steady state. Adv. Phys. 59, 1063–1189 (2010).

    Article  ADS  Google Scholar 

  20. Braun, S. et al. Emergence of coherence and the dynamics of quantum phase transitions. Proc. Natl Acad. Sci. USA 112, 3641–3646 (2015).

    ADS  Google Scholar 

  21. Dziarmaga, J. Dynamics of a quantum phase transition in the random Ising model: logarithmic dependence of the defect density on the transition rate. Phys. Rev. B 74, 064416 (2006).

    Article  ADS  Google Scholar 

  22. Caneva, T., Fazio, R. & Santoro, G. E. Adiabatic quantum dynamics of a random Ising chain across its quantum critical point. Phys. Rev. B 76, 144427 (2007).

    Article  ADS  Google Scholar 

  23. Brooke, J., Bitko, D., Rosenbaum, T. F. & Aeppli, G. Quantum annealing of a disordered magnet. Science 284, 779–781 (1999).

    Article  ADS  Google Scholar 

  24. Pollet, L., Prokof’ev, N., Svistunov, B. & Troyer, M. Absence of a direct superfluid to Mott insulator transition in disordered Bose systems. Phys. Rev. Lett. 103, 140402 (2009).

    Article  ADS  Google Scholar 

  25. Leggett, A. J. Quantum liquids: Bose Condensation and Cooper Pairing in Condensed-Matter Systems (Oxford Univ. Press, 2006).

    Book  Google Scholar 

  26. Ray, U. & Ceperley, D. M. Revealing the condensate and noncondensate distributions in the inhomogeneous Bose–Hubbard model. Phys. Rev. A 87, 051603 (2013).

    Article  ADS  Google Scholar 

  27. Bissbort, U., Thomale, R. & Hofstetter, W. Stochastic mean-field theory: method and application to the disordered Bose–Hubbard model at finite temperature and speckle disorder. Phys. Rev. A 81, 063643 (2010).

    Article  ADS  Google Scholar 

  28. Lin, C.-H., Sensarma, R., Sengupta, K. & Das Sarma, S. Quantum dynamics of disordered bosons in an optical lattice. Phys. Rev. B 86, 214207 (2012).

    Article  ADS  Google Scholar 

  29. Lucas, A. Ising formulations of many NP problems. Front. Phys. 2, 5 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the National Science Foundation (grants PHY 12-05548 and PHY 15-05468) and the Army Research Office (grant W911NF-12-1-0462). Computation time was provided by XSEDE resources at TACC (Texas) and INCITE resources at Oak Ridge National Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

B.D., C.M., U.R. and D.M.C. conceived the research. C.M. and U.R. contributed equally to this work: C.M. conducted and analysed the measurements, and U.R. performed and analysed the numerical simulations. P.R. and D.C. contributed to the measurements and data analysis. B.D. and D.M.C. supervised the experimental and theoretical work, respectively. B.D., U.R. and C.M. wrote the manuscript, which was discussed by and commented on by all authors.

Corresponding author

Correspondence to Brian DeMarco.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1011 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meldgin, C., Ray, U., Russ, P. et al. Probing the Bose glass–superfluid transition using quantum quenches of disorder. Nature Phys 12, 646–649 (2016). https://doi.org/10.1038/nphys3695

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3695

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing