Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Experimental signature of the attractive Coulomb force between positive and negative magnetic monopoles in spin ice

Abstract

A non-Ohmic current that grows exponentially with the square root of applied electric field is well known from thermionic field emission (the Schottky effect)1, electrolytes (the second Wien effect)2 and semiconductors (the Poole–Frenkel effect)3. It is a universal signature of the attractive Coulomb force between positive and negative electrical charges, which is revealed as the charges are driven in opposite directions by the force of an applied electric field. Here we apply thermal quenches4 to spin ice5,6,7,8,9,10,11 to prepare metastable populations of bound pairs of positive and negative emergent magnetic monopoles12,13,14,15,16 at millikelvin temperatures. We find that the application of a magnetic field results in a universal exponential-root field growth of magnetic current, thus confirming the microscopic Coulomb force between the magnetic monopole quasiparticles and establishing a magnetic analogue of the Poole–Frenkel effect. At temperatures above 300 mK, gradual restoration of kinetic monopole equilibria causes the non-Ohmic current to smoothly evolve into the high-field Wien effect2 for magnetic monopoles, as confirmed by comparison to a recent and rigorous theory of the Wien effect in spin ice17,18. Our results extend the universality of the exponential-root field form into magnetism and illustrate the power of emergent particle kinetics to describe far-from-equilibrium response in complex systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetricity in spin ice Dy2Ti2O7 at 65 mK arising from non-equilibrium populations of magnetic monopoles.
Figure 2: Ohmic and non-Ohmic monopole conductivity κ as a function of magnetic field.
Figure 3: High-field Wien effect for magnetic monopoles in spin ice, fitted using the theoretical charge12 and accounting for charge screening as in refs 17,18: data at >0.12 T are shown but not fitted (see Methods and Supplementary Information 1).
Figure 4: Far-from equilibrium magnetic monopole conductivity in spin ice: schematic of our main results for the short-time monopole conductivity as a function of temperature and magnetic field.

Similar content being viewed by others

References

  1. Schottky, W. Über den Einfluß von Strukturwirkungen, besonders der Thomsonschen Bildkraft, auf die Elektronenemission der Metalle. Z. Phys. 15, 872–878 (1914).

    Google Scholar 

  2. Onsager, L. Deviations from Ohm’s law in weak electrolytes. J. Chem. Phys. 2, 599–615 (1934).

    Article  ADS  Google Scholar 

  3. Frenkel, J. On pre-breakdown phenomena in insulators and electronic semi-conductors. Phys. Rev. 4, 647–648 (1938).

    Article  ADS  Google Scholar 

  4. Paulsen, C. et al. Far-from-equilibrium monopole dynamics in spin ice. Nature Phys. 10, 135–139 (2014).

    Article  ADS  Google Scholar 

  5. Harris, M. J., Bramwell, S. T., McMorrow, D. F., Zeiske, T. & Godfrey, K. W. Geometrical frustration in the ferromagnetic pyrochlore Ho2Ti2O7 . Phys. Rev. Lett. 79, 2554–2557 (1997).

    Article  ADS  Google Scholar 

  6. Bramwell, S. T. & Harris, M. J. Frustration in Ising-type spin models on the pyrochlore lattice. J. Phys. Condens. Matter 10, L215–L220 (1998).

    Article  ADS  Google Scholar 

  7. Ramirez, A. P., Hayashi, A., Cava, R. J., Siddharthan, R. B. & Shastry, S. Zero-point entropy in spin ice. Nature 399, 333–335 (1999).

    Article  ADS  Google Scholar 

  8. Siddharthan, R. et al. Ising pyrochlore magnets: low-temperature properties, ice rules, and beyond. Phys. Rev. Lett. 83, 1854–1857 (1999).

    Article  ADS  Google Scholar 

  9. den Hertog, B. C. & Gingras, M. J. P. Dipolar interactions and origin of spin ice in Ising pyrochlore magnets. Phys. Rev. Lett. 84, 3430–3433 (2000).

    Article  ADS  Google Scholar 

  10. Melko, R. G., den Hertog, B. C. & Gingras, M. J. P. Long-range order at low temperatures in dipolar spin ice. Phys. Rev. Lett. 87, 067203 (2001).

    Article  ADS  Google Scholar 

  11. Bramwell, S. T. & Gingras, M. J. P. Spin ice state in frustrated magnetic pyrochlore materials. Science 294, 1495–1501 (2001).

    Article  ADS  Google Scholar 

  12. Castelnovo, C., Moessner, R. & Sondhi, S. L. Magnetic monopoles in spin ice. Nature 451, 42–45 (2008).

    Article  ADS  Google Scholar 

  13. Ryzhkin, I. A. Magnetic relaxation in rare-earth pyrochlores. J. Exp. Theor. Phys. 101, 481–486 (2005).

    Article  ADS  Google Scholar 

  14. Jaubert, L. D. C. & Holdsworth, P. C. W. Signature of magnetic monopole and Dirac string dynamics in spin ice. Nature Phys. 5, 258–261 (2009).

    Article  ADS  Google Scholar 

  15. Jaubert, L. D. C. & Holdsworth, P. C. W. Magnetic monopole dynamics in spin ice. J. Phys. Condens. Matter 23, 164222 (2011).

    Article  ADS  Google Scholar 

  16. Castelnovo, C., Moessner, R. & Sondhi, S. L. Thermal quenches in spin sce. Phys. Rev. Lett. 104, 107201 (2010).

    Article  ADS  Google Scholar 

  17. Kaiser, V., Bramwell, S. T., Holdsworth, P. C. W. & Moessner, R. Onsager’s Wien effect on a lattice. Nature Mater. 12, 1033–1037 (2013).

    Article  ADS  Google Scholar 

  18. Kaiser, V., Bramwell, S. T., Holdsworth, P. C. W. & Moessner, R. AC Wien effect in spin ice, manifest in non-linear non-equilibrium susceptibility. Phys. Rev. Lett. 115, 037201 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  19. Bramwell, S. T. et al. Measurement of the charge and current of magnetic monopoles in spin ice. Nature 461, 956–959 (2009).

    Article  ADS  Google Scholar 

  20. Giblin, S. R., Bramwell, S. T., Holdsworth, P. C. W., Prabhakaran, D. & Terry, I. Creation and measurement of long-lived magnetic monopole currents in spin ice. Nature Phys. 7, 252–258 (2011).

    Article  ADS  Google Scholar 

  21. Snyder, J. et al. Low-temperature spin freezing in the Dy2Ti2O7 spin ice. Phys. Rev. B 69, 064414 (2004).

    Article  ADS  Google Scholar 

  22. Pomaranski, D. et al. Absence of Pauling’s residual entropy in thermally equilibrated Dy2Ti2O7 . Nature Phys. 9, 353–356 (2013).

    Article  ADS  Google Scholar 

  23. McClarty, P. et al. Chain-based order and quantum spin liquids in dipolar spin ice. Phys. Rev. B 92, 094418 (2015).

    Article  ADS  Google Scholar 

  24. Bramwell, S. T. Generalised longitudinal susceptibility for magnetic monopoles in spin ice. Phil. Trans. R. Soc. A 370, 5738–5766 (2012).

    Article  ADS  Google Scholar 

  25. Bovo, L., Jaubert, L. D. C., Holdsworth, P. C. W. & Bramwell, S. T. Crystal shape-dependent magnetic susceptibility and Curie law crossover in the spin ices Dy2Ti2O7 and Ho2Ti2O7 . J. Phys. Condens. Matter 25, 386002 (2013).

    Article  Google Scholar 

  26. Matsuhira, K. et al. Spin dynamics at very low temperature in spin ice Dy2Ti2O7 . J. Phys. Soc. Jpn 80, 123711 (2011).

    Article  ADS  Google Scholar 

  27. Yaraskavitch, L. R. et al. Spin dynamics in the frozen state of the dipolar spin ice material Dy2Ti2O7 . Phys. Rev. B 85, 020410(R) (2012).

    Article  ADS  Google Scholar 

  28. Revell, H. M. et al. Evidence of impurity and boundary effects on magnetic monopole dynamics in spin ice. Nature Phys. 9, 34–37 (2013).

    Article  ADS  Google Scholar 

  29. Sala, G. et al. Vacancy defects and monopole dynamics in oxygen-deficient pyrochlores. Nature Mater. 13, 488–493 (2014).

    Article  ADS  Google Scholar 

  30. Dunsiger, S. R. et al. Spin ice: magnetic excitations without monopole signatures using muon spin rotation. Phys. Rev. Lett. 107, 207207 (2011).

    Article  ADS  Google Scholar 

  31. Blundell, S. J. Monopoles, magnetricity, and the stray field from spin ice. Phys. Rev. Lett. 108, 147601 (2012).

    Article  ADS  Google Scholar 

  32. Chang, L. J., Lees, M. R., Balakrishnan, G., Kao, Y.-J. & Hillier, A. D. Low-temperature muon spin rotation studies of the monopole charges and currents in Y doped Ho2Ti2O7 . Sci. Rep. 3, 1881 (2013).

    Article  Google Scholar 

  33. Nuccio, L., Schulz, L. & Drew, A. J. Muon spin spectroscopy: magnetism, soft matter and the bridge between the two. J. Phys. D 47, 473001 (2014).

    Article  ADS  Google Scholar 

  34. Sinha, K. P. & Kumar, N. Interactions in Magnetically Ordered Solids (Oxford Univ. Press, 1980).

    Google Scholar 

  35. Tholence, J. L. & Salamon, M. B. Field and temperature dependence of the magnetic relaxation in a dilute CuMn spin glass. J. Magn. Magn. Mater. 31–34, 1340–1342 (1983).

    Article  ADS  Google Scholar 

  36. Lundgren, L., Svedlindh, P. & Beckman, O. Experimental indications for a critical relaxation time in spin-glasses. Phys. Rev. B 26, 3990–3993 (1982).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

C.P. acknowledges discussions and mathematical modelling help from C. Gignoux. S.T.B. thanks his collaborators on refs 17,18—V. Kaiser, R. Moessner and P. Holdsworth—for many useful discussions concerning the theory of the Wien effect in spin ice. S.R.G., D.P. and G.B. thank EPSRC for funding. We thank M. Ruminy for assistance with sample preparation. The crystal growth by K.M. was carried out under the Visiting Researchers Program of the Institute for Solid State Physics, the University of Tokyo.

Author information

Authors and Affiliations

Authors

Contributions

Experiments were conceived, designed and performed by C.P., E.L. and S.R.G. The data were analysed by C.P., E.L., S.R.G. and S.T.B., who adapted the theory of ref. 18. Contributed materials and analysis tools were made by K.M., D.P. and G.B. The paper was written by S.T.B., C.P., E.L. and S.R.G.

Corresponding author

Correspondence to C. Paulsen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4928 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paulsen, C., Giblin, S., Lhotel, E. et al. Experimental signature of the attractive Coulomb force between positive and negative magnetic monopoles in spin ice. Nature Phys 12, 661–666 (2016). https://doi.org/10.1038/nphys3704

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3704

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing