Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dirac node arcs in PtSn4

This article has been updated

Abstract

In topological quantum materials1,2,3 the conduction and valence bands are connected at points or along lines in the momentum space. A number of studies have demonstrated that several materials are indeed Dirac/Weyl semimetals4,5,6,7,8. However, there is still no experimental confirmation of materials with line nodes, in which the Dirac nodes form closed loops in the momentum space2,3. Here we report the discovery of a novel topological structure—Dirac node arcs—in the ultrahigh magnetoresistive material PtSn4 using laser-based angle-resolved photoemission spectroscopy data and density functional theory calculations. Unlike the closed loops of line nodes, the Dirac node arc structure arises owing to the surface states and resembles the Dirac dispersion in graphene that is extended along a short line in the momentum space. We propose that this reported Dirac node arc structure is a novel topological state that provides an exciting platform for studying the exotic properties of Dirac fermions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental and calculated structure of the Fermi surface and band dispersion of PtSn4.
Figure 2: Fermi surface and band dispersion in the proximity of the Z point.
Figure 3: Fermi surface plot and band dispersion close to the X point.
Figure 4: Two types of gapless Dirac-like dispersion close to the X point.

Similar content being viewed by others

Change history

  • 07 April 2016

    In the version of this Letter originally published a note about colour figures was mistakenly included in all of the figure captions. These notes have now been removed in all versions of the Letter.

References

  1. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  Google Scholar 

  2. Burkov, A. A., Hook, M. D. & Balents, L. Topological nodal semimetals. Phys. Rev. B 84, 235126 (2011).

    Article  ADS  Google Scholar 

  3. Heikkil, T. & Volovik, G. Dimensional crossover in topological matter: evolution of the multiple dirac point in the layered system to the flat band on the surface. JETP Lett. 93, 59–65 (2011).

    Article  ADS  Google Scholar 

  4. Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014).

    Article  ADS  Google Scholar 

  5. Neupane, M. et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2 . Nature Commun. 5, 3786 (2014).

    Article  ADS  Google Scholar 

  6. Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    Article  ADS  Google Scholar 

  7. Xu, S. et al. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nature Phys. 11, 748–754 (2015).

    Article  ADS  Google Scholar 

  8. Xu, S.-Y. et al. Experimental discovery of a topological Weyl semimetal state in TaP. Sci. Adv. 1, e1501092 (2015).

    Article  ADS  Google Scholar 

  9. Young, S. M. et al. Dirac semimetal in three dimensions. Phys. Rev. Lett. 108, 140405 (2012).

    Article  ADS  Google Scholar 

  10. Wang, Z. et al. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

    Article  ADS  Google Scholar 

  11. Wang, Z., Weng, H., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2 . Phys. Rev. B 88, 125427 (2013).

    Article  ADS  Google Scholar 

  12. Liu, Z. K. et al. A stable three-dimensional topological Dirac semimetal Cd33As2 . Nature Mater. 13, 677–681 (2014).

    Article  ADS  Google Scholar 

  13. Weyl, H. Elektron und gravitation. i. Z. Phys. 56, 330–352 (1929).

    Article  ADS  Google Scholar 

  14. Huang, S. et al. A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nature Commun. 6, 7373 (2015).

    Article  ADS  Google Scholar 

  15. Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  16. Weng, H. et al. Topological node-line semimetal in three-dimensional graphene networks. Phys. Rev. B 92, 045108 (2015).

    Article  ADS  Google Scholar 

  17. Zeng, M. et al. Topological semimetals and topological insulators in rare earth monopnictides. Preprint at http://arxiv.org/abs/1504.03492 (2015).

  18. Yu, R., Weng, H., Fang, Z., Dai, X. & Hu, X. Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN. Phys. Rev. Lett. 115, 036807 (2015).

    Article  ADS  Google Scholar 

  19. Kim, Y., Wieder, B. J., Kane, C. L. & Rappe, A. M. Dirac line nodes in inversion-symmetric crystals. Phys. Rev. Lett. 115, 036806 (2015).

    Article  ADS  Google Scholar 

  20. Fang, C., Chen, Y., Kee, H-Y. & Fu, L. Topological nodal line semimetals with and without spin-orbital coupling. Phys. Rev. B 92, 081201 (2015).

    Article  ADS  Google Scholar 

  21. Bian, G. et al. Drumhead surface states and topological nodal-line fermions in TlTaSe2. Preprint at http://arxiv.org/abs/1508.07521 (2015).

  22. Xie, L. S. et al. A new form of Ca3P2 with a ring of Dirac nodes. APL Mater. 3, 083602 (2015).

    Article  ADS  Google Scholar 

  23. Yamakage, A., Yamakawa, Y., Tanaka, Y. & Okamoto, Y. Line-node Dirac semimetal and topological insulating phase in noncentrosymmetric pnictides CaAgX (X = P, As). J. Phys. Soc. Jpn 85, 013708 (2016).

    Article  ADS  Google Scholar 

  24. Bian, G. et al. Topological nodal-line fermions in spin-orbit metal PbTaSe2 . Nature Commun. 7, 10556 (2016).

    Article  ADS  Google Scholar 

  25. Schoop, L. M. et al. Dirac cone protected by non-symmorphic symmetry and 3D Dirac line node in ZrSiS. Preprint at http://arxiv.org/abs/1509.00861 (2015).

  26. Liang, T. et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2 . Nature Mater. 14, 280–284 (2015).

    Article  ADS  Google Scholar 

  27. Shekhar, C. et al. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. Nature Phys. 11, 645–649 (2015).

    Article  ADS  Google Scholar 

  28. Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2 . Nature 514, 205–208 (2014).

    Article  ADS  Google Scholar 

  29. Mun, E. et al. Magnetic field effects on transport properties of PtSn4 . Phys. Rev. B 85, 035135 (2012).

    Article  ADS  Google Scholar 

  30. Wu, Y. et al. Temperature-induced Lifshitz transition in WTe2 . Phys. Rev. Lett. 115, 166602 (2015).

    Article  ADS  Google Scholar 

  31. Canfield, P. C. & Fisk, Z. Growth of single crystals from metallic fluxes. Philos. Mag. 65, 1117–1123 (1992).

    Article  ADS  Google Scholar 

  32. Canfield, P. C., Kong, T., Kaluarachchi, U. S. & Jo, N. H. Use of frit-disc crucibles for routine and exploratory solution growth of single crystalline samples. Philos. Mag. 96, 84–92 (2016).

    Article  ADS  Google Scholar 

  33. Jiang, R. et al. Tunable vacuum ultraviolet laser based spectrometer for angle resolved photoemission spectroscopy. Rev. Sci. Instrum. 85, 033902 (2014).

    Article  ADS  Google Scholar 

  34. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  35. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  36. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  Google Scholar 

  37. Kresse, G. & Furthmller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  Google Scholar 

  38. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  Google Scholar 

  39. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  Google Scholar 

  40. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  41. Knnen, B., Niepmann, D. & Jeitschko, W. Structure refinements and some properties of the transition metal stannides Os3Sn7, Ir5Sn7, Ni0.402(4)Pd0.598Sn4, α-PdSn2 and PtSn4 . J. Alloys Compd. 309, 1–9 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. Ames Laboratory is operated for the US Department of Energy by Iowa State University under contract No. DE-AC02-07CH11358.

Author information

Authors and Affiliations

Authors

Contributions

P.C.C. initiated the work by insisting that Y.W. and A.K. design and carry out the experiment. Y.W., D.M. and L.H. acquired and analysed ARPES data. L.-L.W., D.D.J. and Y.L. carried out the DFT calculations. E.M. grew the samples under the supervision of S.L.B. and P.C.C. The manuscript was drafted by Y.W. and A.K. All authors discussed and commented on the manuscript.

Corresponding authors

Correspondence to P. C. Canfield or Adam Kaminski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Wang, LL., Mun, E. et al. Dirac node arcs in PtSn4. Nature Phys 12, 667–671 (2016). https://doi.org/10.1038/nphys3712

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3712

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing