Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Discrete knot ejection from the jet in a nearby low-luminosity active galactic nucleus, M81

Abstract

Observational constraints of the relativistic jets from black holes have largely come from the most powerful and extended jets1,2, leaving the nature of the low-luminosity jets a mystery3. M81 is one of the nearest low-luminosity jets and it emitted an extremely large radio flare in 2011, allowing us to study compact core emission with unprecedented sensitivity and linear resolution. Using a multiwavelength campaign, we were able to track the flare as it re-brightened and became optically thick. Simultaneous X-ray observations indicated that the radio re-brightening was preceded by a low-energy X-ray flare at least 12 days earlier. Associating the time delay (tdelay) between the two bands with the cooling time in a synchrotron flare4,5, we find that the magnetic field strength was 1.9 < B < 9.2 G, which is consistent with magnetic field estimate from spectral energy distribution modelling6, B < 10.2 G. In addition, Very Long Baseline Array observations at 23 GHz clearly illustrate a discrete knot moving at a low relativistic speed of vapp/c = 0.51 ± 0.17 associated with the initial radio flare. The observations indicate radial jet motions for the first time in M81. This has profound implications for jet production, as it means radial motion can be observed in even the lowest-luminosity AGN, but at slower velocities and smaller radial extents (104RG).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Radio flare spectral energy distribution.
Figure 2: X-ray flare.
Figure 3: High-resolution radio knot motion.
Figure 4: Changes in knot position and brightness.
Figure 5: Constraints on orientation.
Figure 6: VLBA 16 January 2012 (MJD 55943) observations.

Similar content being viewed by others

References

  1. Jorstad, S. G. et al. Polarimetric observations of 15 active galactic nuclei at high frequencies: jet kinematics from bimonthly monitoring with the very long baseline array. Astron. J. 130, 1418–1465 (2005).

    Article  ADS  Google Scholar 

  2. Asada, K., Nakamura, M., Doi, A., Nagai, H. & Inoue, M. Discovery of sub- to superluminal motions in the M87 jet: an implication of acceleration from sub-relativistic to relativistic speeds. Astrophys. J. 781, L2 (2014).

    Article  ADS  Google Scholar 

  3. Falcke, H., Körding, E. & Nagar, N. M. Compact radio cores: from the first black holes to the last. New Astron. Rev. 48, 1157–1171 (2004).

    Article  ADS  Google Scholar 

  4. Urry, C. M. et al. Multiwavelength monitoring of the bl lacertae object PKS 2155-304 in 1994 May. III. Probing the inner jet through multiwavelength correlations. Astrophys. J. 486, 799–809 (1997).

    Article  ADS  Google Scholar 

  5. Bai, J. M. & Lee, M. G. Radio/X-ray offsets of large-scale jets caused by synchrotron time lags. Astrophys. J. 585, L113–L116 (2003).

    Article  ADS  Google Scholar 

  6. Kellermann, K. I. & Pauliny-Toth, I. I. K. Compact radio sources. Annu. Rev. Astron. Astrophys. 19, 373–410 (1981).

    Article  ADS  Google Scholar 

  7. Bartel, N., Bietenholz, M. F., Rupen, M. P. & Dwarkadas, V. V. SN 1993J VLBI. IV. A geometric distance to M81 with the expanding shock front method. Astrophys. J. 668, 924–940 (2007).

    Article  ADS  Google Scholar 

  8. Devereux, N., Ford, H., Tsvetanov, Z. & Jacoby, G. STIS spectroscopy of the central 10 parsecs of M81: evidence for a massive black hole. Astron. J. 125, 1226–1235 (2003).

    Article  ADS  Google Scholar 

  9. de Bruyn, A. G., Crane, P. C., Price, R. M. & Carlson, J. B. The radio sources in the nuclei of NGC 3031 and NGC 4594. Astron. Astrophys. 46, 243–251 (1976).

    ADS  Google Scholar 

  10. Bartel, N. et al. The nucleus of M81—simultaneous 2.3 and 8.3 GHz mark III VLBI observations. Astrophys. J. 262, 556–563 (1982).

    Article  ADS  Google Scholar 

  11. Bietenholz, M. F., Bartel, N. & Rupen, M. P. The location of the core in M81. Astrophys. J. 615, 173–180 (2004).

    Article  ADS  Google Scholar 

  12. Martí-Vidal, I. et al. Detection of jet precession in the active nucleus of M81. Astron. Astrophys. 533, A111 (2011).

    Article  Google Scholar 

  13. Ishisaki, Y. et al. X-ray properties of the nucleus of M81. Publ. Astron. Soc. Jpn 48, 237–248 (1996).

    Article  ADS  Google Scholar 

  14. Merloni, A., Heinz, S. & di Matteo, T. A fundamental plane of black hole activity. Mon. Not. R. Astron. Soc. 345, 1057–1076 (2003).

    Article  ADS  Google Scholar 

  15. Markoff, S. et al. Results from an extensive simultaneous broadband campaign on the underluminous active nucleus M81: further evidence for mass-scaling accretion in black holes. Astrophys. J. 681, 905–924 (2008).

    Article  ADS  Google Scholar 

  16. Miller, J. M., Nowak, M., Markoff, S., Rupen, M. P. & Maitra, D. Exploring accretion and disk-jet connections in the LLAGN M81. Astrophys. J. 720, 1033–1037 (2010).

    Article  ADS  Google Scholar 

  17. Ho, L. C., van Dyk, S. D., Pooley, G. G., Sramek, R. A. & Weiler, K. W. Discovery of radio outbursts in the active nucleus of M81. Astron. J. 118, 843–852 (1999).

    Article  ADS  Google Scholar 

  18. Pooley, G. Radio flare in M81. Astron. Telegr. 3621, 1 (2011).

    ADS  Google Scholar 

  19. Cotton, W. D. et al. The very flat radio spectrum of 0735 plus 178—a cosmic conspiracy. Astrophys. J. 238, L123–L128 (1980).

    Article  ADS  Google Scholar 

  20. Merloni, A. & Fabian, A. C. Coronal outflow dominated accretion discs: a new possibility for low-luminosity black holes? Mon. Not. R. Astron. Soc. 332, 165–175 (2002).

    Article  ADS  Google Scholar 

  21. Markoff, S., Nowak, M. A. & Wilms, J. Going with the flow: can the base of jets subsume the role of compact accretion disk coronae? Astrophys. J. 635, 1203–1216 (2005).

    Article  ADS  Google Scholar 

  22. Merloni, A. & Heinz, S. Measuring the kinetic power of active galactic nuclei in the radio mode. Mon. Not. R. Astron. Soc. 381, 589–601 (2007).

    Article  ADS  Google Scholar 

  23. Gallo, E. et al. A dark jet dominates the power output of the stellar black hole cygnus X-1. Nature 436, 819–821 (2005).

    Article  ADS  Google Scholar 

  24. Bietenholz, M. F. et al. VLBI observations of the ultracompact radio nucleus of the galaxy M81. Astrophys. J. 457, 604–609 (1996).

    Article  ADS  Google Scholar 

  25. Bietenholz, M. F., Bartel, N. & Rupen, M. P. A stationary core with a one-sided jet in the center of M81. Astrophys. J. 532, 895–908 (2000).

    Article  ADS  Google Scholar 

  26. Chatterjee, R. et al. Disk-jet connection in the radio galaxy 3C 120. Astrophys. J. 704, 1689–1703 (2009).

    Article  ADS  Google Scholar 

  27. Chatterjee, R. et al. Connection between the accretion disk and jet in the radio galaxy 3C 111. Astrophys. J. 734, 43–59 (2011).

    Article  ADS  Google Scholar 

  28. Wehrle, A. E. et al. Kinematics of the parsec-scale relativistic jet in quasar 3C 279: 1991–1997. Astrophys. J. Suppl. 133, 297–320 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.L.K. acknowledges support provided by NASA through an Einstein Postdoctoral Fellowship (grant number PF4-150125) awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060.

Author information

Authors and Affiliations

Authors

Contributions

A.L.K. led the data reduction and analysis, with contributions from J.M.M., M.B. and A.M. K.G., M.T.R., M.R. and N.B. contributed to discussion and interpretation.

Corresponding author

Correspondence to Ashley L. King.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 766 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

King, A., Miller, J., Bietenholz, M. et al. Discrete knot ejection from the jet in a nearby low-luminosity active galactic nucleus, M81. Nature Phys 12, 772–777 (2016). https://doi.org/10.1038/nphys3724

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3724

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing