Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultra-low magnetic damping of a metallic ferromagnet

Abstract

Magnetic damping is of critical importance for devices that seek to exploit the electronic spin degree of freedom, as damping strongly affects the energy required and speed at which a device can operate. However, theory has struggled to quantitatively predict the damping, even in common ferromagnetic materials1,2,3. This presents a challenge for a broad range of applications in spintronics4 and spin-orbitronics that depend on materials and structures with ultra-low damping5,6. It is believed that achieving ultra-low damping in metallic ferromagnets is limited by the scattering of magnons by the conduction electrons. However, we report on a binary alloy of cobalt and iron that overcomes this obstacle and exhibits a damping parameter approaching 10−4, which is comparable to values reported only for ferrimagnetic insulators7,8. We explain this phenomenon by a unique feature of the band structure in this system: the density of states exhibits a sharp minimum at the Fermi level at the same alloy concentration at which the minimum in the magnetic damping is found. This discovery provides both a significant fundamental understanding of damping mechanisms and a test of the theoretical predictions proposed by Mankovsky and colleagues3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ferromagnetic resonance spectra, measured by means of FMR and the resulting linewidth as a function of frequency.
Figure 2: Total measured damping with radiative and interfacial contributions.
Figure 3: Calculated electron density of states (DOS) and its comparison to the intrinsic damping.

Similar content being viewed by others

References

  1. Ebert, H., Mankovsky, S., Ködderitzsch, D. & Kelly, P. J. Ab initio calculation of the Gilbert damping parameter via the linear response formalism. Phys. Rev. Lett. 107, 66603–66607 (2011).

    Article  ADS  Google Scholar 

  2. Gilmore, K., Idzerda, Y. U. & Stiles, M. D. Identification of the dominant precession-damping mechanism in Fe, Co, and Ni by first-principles calculations. Phys. Rev. Lett. 99, 027204 (2007).

    Article  ADS  Google Scholar 

  3. Mankovsky, S., Ködderitzsch, D., Woltersdorf, G. & Ebert, H. First-principles calculation of the Gilbert damping parameter via the linear response formalism with application to magnetic transition metals and alloys. Phys. Rev. B 87, 014430 (2013).

    Article  ADS  Google Scholar 

  4. Žutic, I., Fabian, J. & DasSarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  ADS  Google Scholar 

  5. Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nature Mater. 12, 611–616 (2013).

    Article  ADS  Google Scholar 

  6. Jué, E. et al. Chiral damping of magnetic domain walls. Nature Mater. 15, 272–277 (2016).

    Article  ADS  Google Scholar 

  7. Allivy Kelly, O. et al. Inverse spin Hall effect in nanometer-thick yttrium iron garnet/Pt system. Appl. Phys. Lett. 103, 082408 (2013).

    Article  ADS  Google Scholar 

  8. Onbasli, M. C. et al. Pulsed laser deposition of epitaxial yttrium iron garnet films with low Gilbert damping and bulk-like magnetization. APL Mater. 2, 106102 (2014).

    Article  ADS  Google Scholar 

  9. Kamberský, V. FMR linewidth and disorder in metals. Czech. J. Phys. B 34, 1111–1124 (1984).

    Article  ADS  Google Scholar 

  10. Kamberský, V. On ferromagnetic resonance damping in metals. Czech. J. Phys. B 26, 1366–1383 (1976).

    Article  ADS  Google Scholar 

  11. Kambersky, V. & Patton, C. E. Spin-wave relaxation and phenomenological damping in ferromagnetic resonance. Phys. Rev. B 11, 2668–2672 (1975).

    Article  ADS  Google Scholar 

  12. Thonig, D. & Henk, J. Gilbert damping tensor within the breathing Fermi surface model: anisotropy and non-locality. New J. Phys. 16, 013032 (2014).

    Article  ADS  Google Scholar 

  13. Brataas, A., Tserkovnyak, Y. & Bauer, G. E. W. Scattering theory of Gilbert damping. Phys. Rev. Lett. 101, 037207 (2008).

    Article  ADS  Google Scholar 

  14. Liu, Y., Starikov, A. A., Yuan, Z. & Kelly, P. J. First-principles calculations of magnetization relaxation in pure Fe, Co, and Ni with frozen thermal lattice disorder. Phys. Rev. B 84, 014412 (2011).

    Article  ADS  Google Scholar 

  15. Oogane, M. et al. Magnetic damping in ferromagnetic thin films. Jpn. J. Appl. Phys. 45, 3889–3891 (2006).

    Article  ADS  Google Scholar 

  16. Chang, H. et al. Nanometer-thick yttrium iron garnet films with extremely low damping. IEEE Magn. Lett. 5, 6700204 (2014).

    Google Scholar 

  17. Liu, C., Mewes, C. K. A., Chshiev, M., Mewes, T. & Butler, W. H. Origin of low Gilbert damping in half metals. Appl. Phys. Lett. 95, 022509 (2009).

    Article  ADS  Google Scholar 

  18. Mizukami, S. et al. Low damping constant for CO2FeAl Heusler alloy films and its correlation with density of states. J. Appl. Phys. 105, 07D306 (2009).

    Article  Google Scholar 

  19. Dürrenfeld, P. et al. Tunable damping, saturation magnetization, and exchange stiffness of half-Heusler NiMnSb thin films. Phys. Rev. B 92, 214424 (2015).

    Article  ADS  Google Scholar 

  20. Schoen, M. A. W., Shaw, J. M., Nembach, H. T., Weiler, M. & Silva, T. J. Radiative damping in waveguide-based ferromagnetic resonance measured via analysis of perpendicular standing spin waves in sputtered permalloy films. Phys. Rev. B 92, 184417 (2015).

    Article  ADS  Google Scholar 

  21. Tserkovnyak, Y., Brataas, A. & Bauer, G. E. W. Enhanced Gilbert damping in thin ferromagnetic films. Phys. Rev. Lett. 88, 117601 (2002).

    Article  ADS  Google Scholar 

  22. Hurben, M. J. & Patton, C. E. Theory of two magnon scattering microwave relaxation and ferromagnetic resonance linewidth in magnetic thin films. J. Appl. Phys. 83, 4344–4365 (1998).

    Article  ADS  Google Scholar 

  23. Sun, Y. et al. Damping in yttrium iron garnet nanoscale films capped by platinum. Phys. Rev. Lett. 111, 106601 (2013).

    Article  ADS  Google Scholar 

  24. Zabloudil, J., Hammerling, R., Szunyogh, L. & Weinberger, P. Electron Scattering in Solid Matter (Springer, 2005).

    Book  Google Scholar 

  25. Durham, P. J., Gyorffy, B. L. & Pindor, A. J. On the fundamental equations of the Korringa–Kohn–Rostoker (KKR) version of the coherent potential approximation (CPA). J. Phys. F 10, 661–668 (1980).

    Article  ADS  Google Scholar 

  26. Faulkner, J. S. & Stocks, G. M. Calculating properties with the coherent-potential approximation. Phys. Rev. B 21, 3222–3244 (1980).

    Article  ADS  Google Scholar 

  27. Stern, E. A. Rigid-band model of alloys. Phys. Rev. 157, 544–551 (1967).

    Article  ADS  Google Scholar 

  28. Lounis, S., Santos Dias, M. dos & Schweflinghaus, B. Transverse dynamical magnetic susceptibilities from regular static density functional theory: evaluation of damping and g shifts of spin excitations. Phys. Rev. B 91, 104420 (2015).

    Article  ADS  Google Scholar 

  29. Kamberský, V. On the Landau–Lifshitz relaxation in ferromagnetic metals. Can. J. Phys. 48, 2906–2911 (1970).

    Article  ADS  Google Scholar 

  30. Turek, I., Kudrnovsky, J. & Drchal, V. Nonlocal torque operators in ab initio theory of the Gilbert damping in random ferromagnetic alloys. Phys. Rev. B 92, 214407 (2015).

    Article  ADS  Google Scholar 

  31. Ortiz, C., Eriksson, O. & Klintenberg, M. Data mining and accelerated electronic structure theory as a tool in the search for new functional materials. Comput. Mater. Sci. 44, 1042–1049 (2009).

    Article  Google Scholar 

  32. Nembach, H. T. et al. Perpendicular ferromagnetic resonance measurements of damping and Lande g-factor in sputtered (Co2Mn)1−xGex films. Phys. Rev. B 84, 054424 (2011).

    Article  ADS  Google Scholar 

  33. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988).

    Article  ADS  Google Scholar 

  34. Langreth, D. C. & Mehl, M. J. Beyond the local-density approximation in calculations of ground-state electronic properties. Phys. Rev. B 28, 1809–1834 (1983).

    Article  ADS  Google Scholar 

  35. Perdew, J. P. et al. Erratum: atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 48, 4978 (1993).

    Article  ADS  Google Scholar 

  36. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    Article  ADS  Google Scholar 

  37. Asada, T. & Terakura, K. Generalized-gradient-approximation study of the magnetic and cohesive properties of bcc, fcc, and hcp Mn. Phys. Rev. B 47, 15992–15995 (1993).

    Article  ADS  Google Scholar 

  38. Paxton, A. T., Methfessel, M. & Polatoglou, H. M. Structural energy-volume relations in first-row transition metals. Phys. Rev. B 41, 8127–8138 (1990).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

O.E. acknowledges support from the Swedish Research Council (VR) and the Knut and Alice Wallenberg Foundation (projects 2013.0020 and 2012.0031). DOS calculations were performed under a SNIC project.

Author information

Authors and Affiliations

Authors

Contributions

M.A.W.S. and D.T. wrote the manuscript, J.M.S. and H.T.N. conceived of the experiment, M.A.W.S. deposited the samples, and performed the SQUID measurements and analysis, M.A.W.S., M.L.S. and H.T.N. performed the FMR measurements and analysis, J.M.S. performed the XRD measurements and analysis, D.T. and O.E. performed the first-principles DFT calculations. All authors contributed to the interpretation of the results.

Corresponding author

Correspondence to Justin M. Shaw.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1585 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schoen, M., Thonig, D., Schneider, M. et al. Ultra-low magnetic damping of a metallic ferromagnet. Nature Phys 12, 839–842 (2016). https://doi.org/10.1038/nphys3770

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3770

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing