Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Scaling between magnetic field and temperature in the high-temperature superconductor BaFe2(As1−xPx)2

Abstract

Many exotic metallic systems have a resistivity that varies linearly with temperature, and the physics behind this is thought to be connected to high-temperature superconductivity in the cuprates and iron pnictides1,2,3,4,5,6,7,8,9. Although this phenomenon has attracted considerable attention, it is unclear how the relevant physics manifests in other transport properties, for example their response to an applied magnetic field. We report measurements of the high-field magnetoresistance of the iron pnictide superconductor BaFe2(As1−xPx)2 and find that it obeys an unusual scaling relationship between applied magnetic field and temperature, with a conversion factor given simply by the ratio of the Bohr magneton and the Boltzmann constant. This suggests that magnetic fields probe the same physics that gives rise to the T-linear resistivity, providing a new experimental clue to this long-standing puzzle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HT scaling in BaFe2(As1−xPx)2 at x = 0.31.
Figure 2: Magnetotransport of BaFe2(As1−xPx)2 as a function of Γ near optimal Tc.
Figure 3: Magnetotransport of BaFe2(As1−xPx)2 at two values of x, far from optimal doping.

Similar content being viewed by others

References

  1. Bruin, J. A. N., Sakai, H., Perry, R. S. & Mackenzie, A. P. Similarity of scattering rates in metals showing T-linear resistivity. Science 339, 804–807 (2013).

    Article  ADS  Google Scholar 

  2. Kasahara, S. et al. Evolution from non-Fermi- to Fermi-liquid transport via isovalent doping in BaFe2(As1−xPx)2 superconductors. Phys. Rev. B 81, 184519 (2010).

    Article  ADS  Google Scholar 

  3. Takagi, H. et al. Systematic evolution of temperature-dependent resistivity in La2−xSrxCuO4 . Phys. Rev. Lett. 69, 2975–2978 (1992).

    Article  ADS  Google Scholar 

  4. Cooper, R. A. et al. Anomalous criticality in the electrical resistivity of La2−xSrxCuO4 . Science 323, 603–607 (2009).

    Article  ADS  Google Scholar 

  5. Varma, C. M., Littlewood, P. B., Schmitt-Rink, S., Abrahams, E. & Ruckenstein, A. E. Phenomenology of the normal state of Cu-O high-temperature superconductors. Phys. Rev. Lett. 63, 1996–1999 (1989).

    Article  ADS  Google Scholar 

  6. Kivelson, S. A., Fradkin, E. & Emery, V. J. Electronic liquid-crystal phases of a doped mott insulator. Nature 393, 550–553 (1998).

    Article  ADS  Google Scholar 

  7. Hartnoll, S. A. Theory of universal incoherent metallic transport. Nature Phys. 11, 54–61 (2015).

    Article  ADS  Google Scholar 

  8. Sachdev, S. & Ye, J. Universal quantum-critical dynamics of two-dimensional antiferromagnets. Phys. Rev. Lett. 69, 2411–2414 (1992).

    Article  ADS  Google Scholar 

  9. Phillips, P. & Chamon, C. Breakdown of one-parameter scaling in quantum critical scenarios for high-temperature copper-oxide superconductors. Phys. Rev. Lett. 95, 107002 (2005).

    Article  ADS  Google Scholar 

  10. Borzi, R. A. et al. Formation of a nematic fluid at high fields in Sr3Ru2O7 . Science 315, 214–217 (2007).

    Article  ADS  Google Scholar 

  11. Custers, J. et al. The break-up of heavy electrons at a quantum critical point. Nature 424, 524–527 (2003).

    Article  ADS  Google Scholar 

  12. Marel, D. v. d. et al. Quantum critical behaviour in a high-Tc superconductor. Nature 425, 271–274 (2003).

    Article  ADS  Google Scholar 

  13. Zaanen, J. Superconductivity: why the temperature is high. Nature 430, 512–513 (2004).

    Article  ADS  Google Scholar 

  14. Butch, N. P., Jin, K., Kirshenbaum, K., Greene, R. L. & Paglione, J. Quantum critical scaling at the edge of Fermi liquid stability in a cuprate superconductor. Proc. Natl Acad. Sci. USA 109, 8440–8444 (2012).

    Article  ADS  Google Scholar 

  15. Shekhter, A. et al. Bounding the pseudogap with a line of phase transitions in YBa2Cu3O6+δ . Nature 498, 75–77 (2013).

    Article  ADS  Google Scholar 

  16. Ramshaw, B. J. et al. Quasiparticle mass enhancement approaching optimal doping in a high-Tc superconductor. Science 26, 317–320 (2015).

    Article  ADS  Google Scholar 

  17. Kasahara, S. et al. Electronic nematicity above the structural and superconducting transition in BaFe2(As1−xPx)2 . Nature 486, 382–385 (2012).

    Article  ADS  Google Scholar 

  18. Hashimoto, K. et al. A sharp peak of the zero-temperature penetration depth at optimal composition in BaFe2(As1−xPx)2 . Science 336, 1554–1557 (2012).

    Article  ADS  Google Scholar 

  19. Dai, J., Si, Q., Zhu, J.-X. & Abrahams, E. Iron pnictides as a new setting for quantum criticality. Proc. Natl Acad. Sci. USA 106, 4118–4121 (2009).

    Article  ADS  Google Scholar 

  20. Jiang, S. et al. Superconductivity up to 30 K in the vicinity of the quantum critical point in BaFe2(As1−xPx)2 . J. Phys. Condens. Matter 21, 382203 (2009).

    Article  Google Scholar 

  21. Nakai, Y. et al. 31P and 75As NMR evidence for a residual density of states at zero energy in superconducting BaFe2(As0.67P0.33)2 . Phys. Rev. B 81, 020503 (2010).

    Article  ADS  Google Scholar 

  22. Shishido, H. et al. Evolution of the Fermi surface of BaFe2(As1−xPx)2 on entering the superconducting dome. Phys. Rev. Lett. 104, 057008 (2010).

    Article  ADS  Google Scholar 

  23. Walmsley, P. et al. Quasiparticle mass enhancement close to the quantum critical point in BaFe2(As1−xPx)2 . Phys. Rev. Lett. 110, 257002 (2013).

    Article  ADS  Google Scholar 

  24. Analytis, J. G. et al. Transport near a quantum critical point in BaFe2(As1−xPx)2 . Nature Phys. 10, 194–197 (2014).

    Article  ADS  Google Scholar 

  25. Analytis, J. G., Chu, J., McDonald, R. D., Riggs, S. C. & Fisher, I. R. Enhanced Fermi-surface nesting in superconducting BaFe2(As1−xPx)2 revealed by the de Haas–van Alphen effect. Phys. Rev. Lett. 105, 207004 (2010).

    Article  ADS  Google Scholar 

  26. Pippard, A. B. Magnetoresistance in Metals (Cambridge Univ. Press, 2009).

    Google Scholar 

  27. Koshelev, A. E. Linear magnetoconductivity in multiband spin-density-wave metals with nonideal nesting. Phys. Rev. B 88, 060412(R) (2013).

    Article  ADS  Google Scholar 

  28. Fenton, J. & Schofield, A. J. Breakdown of weak-field magnetotransport at a metallic quantum critical point. Phys. Rev. Lett. 95, 247201 (2005).

    Article  ADS  Google Scholar 

  29. Rosa, P. F. S. et al. Possible unconventional superconductivity in substituted BaFe2As2 revealed by magnetic pair-breaking studies. Sci. Rep. 4, 6252 (2014).

    Article  Google Scholar 

  30. Weickert, F., Gegenwart, P., Ferstl, J., Geibel, C. & Steglich, F. Low-temperature electrical resistivity of Yb1−xLaxRh2Si2 . Physica B 378–380, 72–73 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I.M.H. and N.P.B. acknowledge support from the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under the US Department of Energy Contract No. DE-AC02-05CH11231. T.H. was supported by the Quantum Materials FWP, US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02- 05CH11231. A portion of this work was supported by the Gordon and Betty Moore Foundations EPiQS Initiative through Grant GBMF4374. A portion of this work was completed at the National High Magnetic Field Laboratory’s Pulsed Field Facility at Los Alamos National Laboratory, which is supported through National Science Foundation Cooperative Agreement No. DMR 1157490 and the Department of Energy. R.D.M. acknowledges US DOE BES-Science of 100 Tesla. The authors extend their gratitude to the scientific and technical support staff of the NHMFL Pulsed Field Facility, particularly B. J. Ramshaw and the 100 Tesla operations team. The authors also thank S. Kivelson, P. Coleman, D. Maslov, A. Chubukov and P. Phillips for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

I.M.H., J.G.A., A.S. and R.D.M. conceived the experiment and performed the analysis. I.M.H., T.H. and J.G.A. synthesized the samples. I.M.H., J.G.A., R.M.D., M.W., T.H. and N.P.B. performed the measurements at high magnetic fields. P.J.W.M. prepared the overdoped samples for transport measurements. All authors participated in the writing of the manuscript.

Corresponding author

Correspondence to James G. Analytis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4375 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayes, I., McDonald, R., Breznay, N. et al. Scaling between magnetic field and temperature in the high-temperature superconductor BaFe2(As1−xPx)2. Nature Phys 12, 916–919 (2016). https://doi.org/10.1038/nphys3773

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3773

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing