Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Parametric amplification of a superconducting plasma wave

Abstract

Many applications in photonics require all-optical manipulation of plasma waves1, which can concentrate electromagnetic energy on sub-wavelength length scales. This is difficult in metallic plasmas because of their small optical nonlinearities. Some layered superconductors support Josephson plasma waves2,3, involving oscillatory tunnelling of the superfluid between capacitively coupled planes. Josephson plasma waves are also highly nonlinear4, and exhibit striking phenomena such as cooperative emission of coherent terahertz radiation5,6, superconductor–metal oscillations7 and soliton formation8. Here, we show that terahertz Josephson plasma waves can be parametrically amplified through the cubic tunnelling nonlinearity in a cuprate superconductor. Parametric amplification is sensitive to the relative phase between pump and seed waves, and may be optimized to achieve squeezing of the order-parameter phase fluctuations9 or terahertz single-photon devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of Josephson plasma waves.
Figure 2: Linear JPWs in LBCO9.5.
Figure 3: Nonlinear JPWs in LBCO9.5.
Figure 4: Amplification and suppression of plasma oscillations.
Figure 5: Time-delay-dependent and frequency-dependent loss function.

Similar content being viewed by others

References

  1. Kauranen, M. & Zayats, A. V. Nonlinear plasmonics. Nature Photon. 6, 737–748 (2012).

    Article  ADS  Google Scholar 

  2. Basov, D. N. & Timusk, T. Electrodynamics of high-Tc superconductors. Rev. Mod. Phys. 77, 721–779 (2005).

    Article  ADS  Google Scholar 

  3. Kleiner, R., Steinmeyer, F., Kunkel, G. & Müller, P. Intrinsic Josephson effects in Bi2Sr2CaCu2O8 single crystals. Phys. Rev. Lett. 68, 2394–2397 (1992).

    Article  ADS  Google Scholar 

  4. Savel’ev, S., Rakhmanov, A. L., Yampol’skii, V. A. & Nori, F. Analogues of nonlinear optics using terahertz Josephson plasma waves in layered superconductors. Nature Phys. 2, 521–525 (2006).

    Article  ADS  Google Scholar 

  5. Ozyuzer, L. et al. Emission of coherent THz radiation from superconductors. Science 318, 1291–1293 (2007).

    Article  ADS  Google Scholar 

  6. Hu, X. & Lin, S.-Z. Phase dynamics in a stack of inductively coupled intrinsic Josephson junctions and terahertz electromagnetic radiation. Supercond. Sci. Technol. 23, 053001 (2010).

    Article  ADS  Google Scholar 

  7. Dienst, A. et al. Bi-directional ultrafast electric-field gating of interlayer charge transport in a cuprate superconductor. Nature Photon. 5, 485–488 (2011).

    Article  ADS  Google Scholar 

  8. Dienst, A. et al. Optical excitation of Josephson plasma solitons in a cuprate superconductor. Nature Mater. 12, 535–541 (2013).

    Article  ADS  Google Scholar 

  9. Lü, X.-Y. et al. Squeezed optomechanics with phase-matched amplification and dissipation. Phys. Rev. Lett. 114, 093602 (2015).

    Article  ADS  Google Scholar 

  10. Josephson, B. D. Coupled superconductors. Rev. Mod. Phys. 36, 216–220 (1964).

    Article  ADS  Google Scholar 

  11. Dressel, M. & Grüner, G. Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge Univ. Press, 2002).

    Book  Google Scholar 

  12. Dreyhaupt, A., Winnerl, S., Dekorsy, T. & Helm, M. High-intensity terahertz radiation from a microstructured large-area photoconductor. Appl. Phys. Lett. 86, 121114 (2005).

    Article  ADS  Google Scholar 

  13. Thorsmølle, V. K. et al. C-axis Josephson plasma resonance observed in Tl2Ba2CaCu2O8 superconducting thin films by use of terahertz time-domain spectroscopy. Opt. Lett. 26, 1292–1294 (2001).

    Article  ADS  Google Scholar 

  14. Hebling, J., Yeh, K.-L., Hoffmann, M. C., Bartal, B. & Nelson, K. A. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities. J. Opt. Soc. Am. B 25, B6 (2008).

    Article  Google Scholar 

  15. Hamm, P. Coherent effects in femtosecond infrared spectroscopy. Chem. Phys. 200, 415–429 (1995).

    Article  Google Scholar 

  16. Tripathi, S. R. et al. Terahertz wave parametric amplifier. Opt. Lett. 39, 1649–1652 (2014).

    Article  ADS  Google Scholar 

  17. Hohenleutner, M. et al. Real-time observation of interfering crystal electrons in high-harmonic generation. Nature 523, 572–575 (2015).

    Article  ADS  Google Scholar 

  18. Vijay, R. et al. Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback. Nature 490, 77–80 (2012).

    Article  ADS  Google Scholar 

  19. Macklin, C. et al. A near-quantum-limited Josephson traveling-wave parametric amplifier. Science 350, 307–310 (2015).

    Article  ADS  Google Scholar 

  20. Eichler, C., Salathe, Y., Mlynek, J., Schmidt, S. & Wallraff, A. Quantum-limited amplification and entanglement in coupled nonlinear resonators. Phys. Rev. Lett. 113, 110502 (2014).

    Article  ADS  Google Scholar 

  21. Castellanos-Beltran, M. A. & Lehnert, K. W. Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator. Appl. Phys. Lett. 91, 83509 (2007).

    Article  Google Scholar 

  22. Almog, R., Zaitsev, S., Shtempluck, O. & Buks, E. Noise squeezing in a nanomechanical duffing resonator. Phys. Rev. Lett. 98, 78103 (2007).

    Article  ADS  Google Scholar 

  23. Zagoskin, A. M., Il’ichev, E., McCutcheon, M. W., Young, J. F. & Nori, F. Controlled generation of squeezed states of microwave radiation in a superconducting resonant circuit. Phys. Rev. Lett. 101, 253602 (2008).

    Article  ADS  Google Scholar 

  24. Denny, S. J., Clark, S. R., Laplace, Y., Cavalleri, A. & Jaksch, D. Proposed parametric cooling of bilayer cuprate superconductors by terahertz excitation. Phys. Rev. Lett. 114, 137001 (2015).

    Article  ADS  Google Scholar 

  25. Bilbro, L. S. et al. Temporal correlations of superconductivity above the transition temperature in La2−xSrxCuO4 probed by terahertz spectroscopy. Nature Phys. 7, 298–302 (2011).

    Article  ADS  Google Scholar 

  26. Corson, J., Mallozzi, R., Orenstein, J., Eckstein, J. N. & Bozovic, I. Vanishing of phase coherence in underdoped Bi2Sr2CaCu2O8+δ . Nature 398, 221–223 (1999).

    Article  ADS  Google Scholar 

  27. Homes, C. C. et al. Determination of the optical properties of La2−xBaxCuO4 for several dopings, including the anomalous x = 1/8 phase. Phys. Rev. B 85, 134510 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement no. 319286 (QMAC). We acknowledge support from the Deutsche Forschungsgemeinschaft via the excellence cluster ‘The Hamburg Centre for Ultrafast Imaging—Structure, Dynamics and Control of Matter at the Atomic Scale’ and the Priority Program SFB925. Work performed at Brookhaven was supported by US Department of Energy, Division of Materials Science under contract no. DE-AC02-98CH10886.

Author information

Authors and Affiliations

Authors

Contributions

A.C. conceived the project together with S.R. S.R. built the terahertz pump–probe experimental set-up, performed the measurement and analysed the experimental data with the support of D.N. The simulations were performed by S.R. and E.C., with input from Y.L., S.R.C. and D.J. The results were discussed and interpreted by S.R., Y.L. and A.C. The sample was grown and characterized at Brookhaven by G.D.G. The manuscript was written by A.C., S.R. and D.N., with input from all authors.

Corresponding author

Correspondence to A. Cavalleri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 15804 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajasekaran, S., Casandruc, E., Laplace, Y. et al. Parametric amplification of a superconducting plasma wave. Nature Phys 12, 1012–1016 (2016). https://doi.org/10.1038/nphys3819

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3819

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing