Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Visualizing the evolution from the Mott insulator to a charge-ordered insulator in lightly doped cuprates

Abstract

High-temperature superconductivity in the cuprates is widely believed to originate from an antiferromagnetic parent Mott insulator when doped with charge carriers1. In terms of the electronic structure, the key question is how the large charge transfer gap evolves into the pseudogap and then the d-wave superconducting gap2,3,4,5. However, whether superconductivity or some other symmetry-breaking state (such as charge or spin orders) emerges first on doping a Mott insulator is debatable. To address these issues, here we use scanning tunnelling microscopy to investigate the local electronic structure of lightly doped cuprates in the antiferromagnetic insulating regime. We show that the doped charge induces a spectral weight transfer from the high-energy Hubbard bands to low-energy states within the charge transfer gap. With increasing doping, a V-shaped density-of-state suppression reminiscent of the pseudogap occurs at the Fermi level, which is accompanied by the emergence of chequerboard charge order. Our data suggest that the cuprates first become a charge-ordered insulator on doping, and the Fermi surface and high-temperature superconductivity becomes manifest on further doping.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electronic structure of lightly hole-doped La-Bi2201 near the Mott insulator limit.
Figure 2: DOS map of the p = 0.03 sample measured at varied biases.
Figure 3: The electronic structure evolution and chequerboard charge order in the p = 0.07 sample.
Figure 4: The wavevector of the chequerboard charge order.

Similar content being viewed by others

References

  1. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  ADS  Google Scholar 

  2. Timusk, T. & Statt, B. The pseudogap in high-temperature superconductors: an experimental survey. Rep. Prog. Phys. 62, 61–122 (1999).

    Article  ADS  Google Scholar 

  3. Fischer, Ø., Kugler, M., Maggio-Aprile, I., Berthod, C. & Renner, C. Scanning tunneling spectroscopy of high-temperature superconductors. Rev. Mod. Phys. 79, 353–419 (2007).

    Article  ADS  Google Scholar 

  4. Hashimoto, M., Vishik, I. M., He, R.-H., Devereaux, T. P. & Shen, Z.-X. Energy gaps in high-transition-temperature cuprate superconductors. Nature Phys. 10, 483–495 (2014).

    Article  ADS  Google Scholar 

  5. Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

    Article  ADS  Google Scholar 

  6. Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y. & Uchida, S. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995).

    Article  ADS  Google Scholar 

  7. Hoffman, J. E. et al. A four unit cell periodic pattern of quasi-particle states surrounding vortex cores in Bi2Sr2CaCu2O8+δ . Science 295, 466–469 (2002).

    Article  ADS  Google Scholar 

  8. Hanaguri, T. et al. A /‘checkerboard/’ electronic crystal state in lightly hole-doped Ca2−xNaxCuO2Cl2 . Nature 430, 1001–1005 (2004).

    Article  ADS  Google Scholar 

  9. Vershinin, M. et al. Local ordering in the pseudogap state of the high-Tc superconductor Bi2Sr2CaCu2O8+δ . Science 303, 1995–1998 (2004).

    Article  ADS  Google Scholar 

  10. Ghiringhelli, G. et al. Long-range incommensurate charge fluctuations in (Y, Nd)Ba2Cu3O6+x . Science 337, 821–825 (2012).

    Article  ADS  Google Scholar 

  11. Comin, R. et al. Charge order driven by Fermi-arc instability in Bi2Sr2−xLaxCuO6+δ . Science 343, 390–392 (2014).

    Article  ADS  Google Scholar 

  12. Aeppli, G., Mason, T. E., Hayden, S. M., Mook, H. A. & Kulda, J. Nearly singular magnetic fluctuations in the normal state of a high-Tc cuprate superconductor. Science 278, 1432–1435 (1997).

    Article  ADS  Google Scholar 

  13. Lake, B. et al. Spins in the vortices of a high-temperature superconductor. Science 291, 1759–1762 (2001).

    Article  ADS  Google Scholar 

  14. Hücker, M. et al. Competing charge, spin, and superconducting orders in underdoped YBa2Cu3Oy . Phys. Rev. B 90, 054514 (2014).

    Article  ADS  Google Scholar 

  15. da Silva Neto, E. H. et al. Ubiquitous interplay between charge ordering and high-temperature superconductivity in cuprates. Science 343, 393–396 (2014).

    Article  ADS  Google Scholar 

  16. Chang, J. et al. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67 . Nature Phys. 8, 871–876 (2012).

    Article  ADS  Google Scholar 

  17. Kohsaka, Y. et al. Visualization of the emergence of the pseudogap state and the evolution to superconductivity in a lightly hole-doped Mott insulator. Nature Phys. 8, 534–538 (2012).

    Article  ADS  Google Scholar 

  18. Ono, S. & Ando, Y. Evolution of the resistivity anisotropy in Bi2Sr2−xLaxCuO6+δ single crystals for a wide range of hole doping. Phys. Rev. B 67, 104512 (2003).

    Article  ADS  Google Scholar 

  19. Kawasaki, S., Lin, C., Kuhns, P. L., Reyes, A. P. & Zheng, G.-q. Carrier-concentration dependence of the pseudogap ground state of superconducting Bi2Sr2−xLaxCuO6+δ revealed by 63,65Cu-nuclear magnetic resonance in very high magnetic fields. Phys. Rev. Lett. 105, 137002 (2010).

    Article  ADS  Google Scholar 

  20. Peng, Y. et al. Disappearance of nodal gap across the insulator–superconductor transition in a copper-oxide superconductor. Nature Commun. 4, 2459 (2013).

    Article  ADS  Google Scholar 

  21. Ye, C. et al. Visualizing the atomic-scale electronic structure of the Ca2CuO2Cl2 Mott insulator. Nature Commun. 4, 1365 (2013).

    Article  ADS  Google Scholar 

  22. Wise, W. D. et al. Imaging nanoscale Fermi-surface variations in an inhomogeneous superconductor. Nature Phys. 5, 213–216 (2009).

    Article  ADS  Google Scholar 

  23. Anderson, P. W. & Ong, N. P. Theory of asymmetric tunneling in the cuprate superconductors. J. Phys. Chem. Solids 67, 1–5 (2006).

    Article  ADS  Google Scholar 

  24. Randeria, M., Sensarma, R., Trivedi, N. & Zhang, F.-C. Particle-hole asymmetry in doped Mott insulators: implications for tunneling and photoemission spectroscopies. Phys. Rev. Lett. 95, 137001 (2005).

    Article  ADS  Google Scholar 

  25. Wise, W. D. et al. Charge-density-wave origin of cuprate checkerboard visualized by scanning tunnelling microscopy. Nature Phys. 4, 696–699 (2008).

    Article  ADS  Google Scholar 

  26. Shen, K. M. et al. Nodal quasiparticles and antinodal charge ordering in Ca2−xNaxCuO2Cl2 . Science 307, 901–904 (2005).

    Article  ADS  Google Scholar 

  27. He, R.-H. et al. From a single-band metal to a high-temperature superconductor via two thermal phase transitions. Science 331, 1579–1583 (2011).

    Article  ADS  Google Scholar 

  28. Tabis, W. et al. Charge order and its connection with Fermi-liquid charge transport in a pristine high-Tc cuprate. Nature Commun. 5, 5875 (2014).

    Article  ADS  Google Scholar 

  29. Raichle, M. et al. Highly anisotropic anomaly in the dispersion of the copper-oxygen bond-bending phonon in superconducting YBa2Cu3O7 from inelastic neutron scattering. Phys. Rev. Lett. 107, 177004 (2011).

    Article  ADS  Google Scholar 

  30. Le Tacon, M. et al. Inelastic X-ray scattering in YBa2Cu3O6.6 reveals giant phonon anomalies and elastic central peak due to charge-density-wave formation. Nature Phys. 10, 52–58 (2014).

    Article  ADS  Google Scholar 

  31. Chen, H.-D., Vafek, O., Yazdani, A. & Zhang, S.-C. Pair density wave in the pseudogap state of high temperature superconductors. Phys. Rev. Lett. 93, 187002 (2004).

    Article  ADS  Google Scholar 

  32. Sebastian, S. E. et al. A multi-component Fermi surface in the vortex state of an underdoped high-Tc superconductor. Nature 454, 200–203 (2008).

    Article  ADS  Google Scholar 

  33. White, S. R. & Scalapino, D. J. Checkerboard patterns in the t-J model. Phys. Rev. B 70, 220506(R) (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank T. K. Lee, N. Trivedi, F. Wang, Z. Y. Weng, T. Xiang and G. M. Zhang for helpful discussions. This work is supported by the NSFC and MOST of China (2011CB921703, 2011CBA00110, 2015CB921000), and the Chinese Academy of Sciences (XDB07020300). D.-H.L. was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, grant DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

P.C., W.R., C.Y., X.L. and Z.H. carried out the STM experiments. Y.P. and X.Z. grew the La-Bi2201 single crystals. D.-H.L. provided theoretical analysis. Y.W. designed the project and prepared the manuscript. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Yayu Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1974 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, P., Ruan, W., Peng, Y. et al. Visualizing the evolution from the Mott insulator to a charge-ordered insulator in lightly doped cuprates. Nature Phys 12, 1047–1051 (2016). https://doi.org/10.1038/nphys3840

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3840

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing