Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2

Abstract

Weyl semimetal is a new quantum state of matter1,2,3,4,5,6,7,8,9,10,11,12 hosting the condensed matter physics counterpart of the relativistic Weyl fermions13 originally introduced in high-energy physics. The Weyl semimetal phase realized in the TaAs class of materials features multiple Fermi arcs arising from topological surface states10,11,14,15,16 and exhibits novel quantum phenomena, such as a chiral anomaly-induced negative magnetoresistance17,18,19 and possibly emergent supersymmetry20. Recently it was proposed theoretically that a new type (type-II) of Weyl fermion21,22 that arises due to the breaking of Lorentz invariance, which does not have a counterpart in high-energy physics, can emerge as topologically protected touching between electron and hole pockets. Here, we report direct experimental evidence of topological Fermi arcs in the predicted type-II Weyl semimetal MoTe2 (refs 23,24,25). The topological surface states are confirmed by directly observing the surface states using bulk- and surface-sensitive angle-resolved photoemission spectroscopy, and the quasi-particle interference pattern between the putative topological Fermi arcs in scanning tunnelling microscopy. By establishing MoTe2 as an experimental realization of a type-II Weyl semimetal, our work opens up opportunities for probing the physical properties of this exciting new state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of type-II Weyl semimetal MoTe2.
Figure 2: Band structure of MoTe2.
Figure 3: Observation of topological Fermi arcs in the Td phase of MoTe2.
Figure 4: Bulk states versus surface states distinguished by ARPES.
Figure 5: Quasi-particle interference pattern.

Similar content being viewed by others

References

  1. Nielsen, H. B. & Ninomiya, M. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  2. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  ADS  Google Scholar 

  3. Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    Article  ADS  Google Scholar 

  4. Xu, G., Weng, H., Wang, Z., Dai, X. & Fang, Z. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4 . Phys. Rev. Lett. 107, 186806 (2011).

    Article  ADS  Google Scholar 

  5. Yang, K. Y., Lu, Y. M. & Ran, Y. Quantum Hall effects in a Weyl semimetal: possible application in pyrochlore iridates. Phys. Rev. B 84, 075129 (2011).

    Article  ADS  Google Scholar 

  6. Hosur, P. & Qi, X. Recent developments in transport phenomena in Weyl semimetals. C. R. Phys. 14, 857–870 (2013).

    Article  ADS  Google Scholar 

  7. Zhang, H., Wang, J., Xu, G., Xu, Y. & Zhang, S. C. Topological states in ferromagnetic CdO/EuO superlattices and quantum wells. Phys. Rev. Lett. 112, 096804 (2014).

    Article  ADS  Google Scholar 

  8. Liu, J. & Vanderbilt, D. Weyl semimetals from noncentrosymmetric topological insulators. Phys. Rev. B 90, 155316 (2014).

    Article  ADS  Google Scholar 

  9. Hirayama, M., Okugawa, R., Ishibashi, S., Murakami, S. & Miyake, T. Weyl node and spin texture in trigonal tellurium and selenium. Phys. Rev. Lett. 114, 206401 (2015).

    Article  ADS  Google Scholar 

  10. Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  11. Huang, S.-M. et al. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015).

    Article  ADS  Google Scholar 

  12. Ruan, J. et al. Symmetry-protected ideal Weyl semimetal in HgTe-class materials. Nat. Commun. 7, 11136 (2016).

    Article  ADS  Google Scholar 

  13. Weyl, H. Elektron und gravitation I. Z. Phys. 56, 330–352 (1929).

    Article  ADS  Google Scholar 

  14. Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    Article  ADS  Google Scholar 

  15. Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  16. Yang, L. X. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 11, 728–732 (2015).

    Article  Google Scholar 

  17. Son, D. T. & Spivak, B. Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).

    Article  ADS  Google Scholar 

  18. Huang, X. et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015).

    Google Scholar 

  19. Zhang, C. et al. Signatures of the Adler-Bell-Jackiw chiral anomaly in a Weyl fermion semimetal. Nat. Commun. 7, 10735 (2016).

    Article  ADS  Google Scholar 

  20. Jian, S. K., Jiang, Y. F. & Yao, H. Emergent spacetime supersymmetry in 3D Weyl semimetals and 2D Dirac semimetals. Phys. Rev. Lett. 114, 237001 (2015).

    Article  ADS  Google Scholar 

  21. Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    Article  ADS  Google Scholar 

  22. Xu, Y., Zhang, F. & Zhang, C. Structured Weyl points in spin-orbit coupled fermionic superfluids. Phys. Rev. Lett. 115, 265304 (2015).

    Article  ADS  Google Scholar 

  23. Sun, Y., Wu, S. C., Ali, M. N., Felser, C. & Yan, B. Prediction of Weyl semimetal in orthorhombic MoTe2 . Phys. Rev. B 92, 161107 (2015).

    Article  ADS  Google Scholar 

  24. Wang, Z. et al. MoTe2: a type-II Weyl topological metal. Phys. Rev. Lett. 117, 056805 (2016).

    Article  ADS  Google Scholar 

  25. Kourtis, S., Li, J., Wang, Z., Yazdani, A. & Bernevig, B. A. Universal signatures of Fermi arcs in quasiparticle interference on the surface of Weyl semimetals. Phys. Rev. B 93, 041109 (2016).

    Article  ADS  Google Scholar 

  26. Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2 . Nature 514, 205–208 (2014).

    Article  ADS  Google Scholar 

  27. Chang, T.-R. et al. Prediction of an arc-tunable Weyl fermion metallic state in MoxW1−xTe2 . Nat. Commun. 7, 10639 (2016).

    Article  ADS  Google Scholar 

  28. Qi, Y. et al. Superconductivity in Weyl semimetal candidate MoTe2 . Nat. Commun. 7, 11038 (2016).

    Article  ADS  Google Scholar 

  29. Pletikosić, I., Ali, M. N., Fedorov, A. V., Cava, R. J. & Valla, T. Electronic structure basis for the extraordinary magntoresistance in WTe2 . Phys. Rev. Lett. 113, 216601 (2014).

    Article  ADS  Google Scholar 

  30. Wu, Y. et al. Temperature-induced Lifshiftz transition in WTe2 . Phys. Rev. Lett. 115, 166602 (2015).

    Article  ADS  Google Scholar 

  31. Jiang, J. et al. Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2 . Phys. Rev. Lett. 115, 166601 (2015).

    Article  ADS  Google Scholar 

  32. Beloposki, I. et al. Fermi arc electronic structure and Chern numbers in the type-II Weyl semimetal candidate MoxW1−xTe2 . Phys. Rev. B 94, 085127 (2016).

    Article  ADS  Google Scholar 

  33. Clarke, R., Marseglia, E. & Hughes, H. P. A low-temperature structural phase transition in β-MoTe2 . Phil. Mag. B 38, 121–126 (1978).

    Article  ADS  Google Scholar 

  34. Manolikas, C., Van Landuyt, J. & Amelinckx, S. Electron microscopy and electron diffraction study of the domain structures, the dislocation fine structure, and the phase transformations in β-MoTe2 . Phys. Status Solidi 53, 327–338 (1979).

    Article  ADS  Google Scholar 

  35. Keum, D. H. et al. Bandgap opening in few-layered monoclinic MoTe2 . Nat. Phys. 11, 482–486 (2015).

    Article  Google Scholar 

  36. Wang, J. et al. Power-law decay of standing waves on the surface of topological insulators. Phys. Rev. B 84, 235447 (2011).

    Article  ADS  Google Scholar 

  37. Zhang, T. et al. Experimental demonstration of topological surface states protected by time-reversal symmetry. Phys. Rev. Lett. 103, 266803 (2009).

    Article  ADS  Google Scholar 

  38. Huang, L. et al. Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2 . Nat. Mater. http://dx.doi.org/10.1038/nmat4685 (2016).

  39. Xu, S.-Y. et al. Discovery of Lorentz-violating Weyl fermion semimetal state in LaAlGe materials. Preprint at http://arXiv.org/abs/1603.07318 (2016).

  40. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (grant no. 11274191, 11334006), Ministry of Science and Technology of China (no. 2015CB92100, 2016YFA0301004 and 2012CB932301) and Tsinghua University Initiative Scientific Research Program (no. 2012Z02285). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

S.Z., X.C. and Y.W. conceived the research project. K.D. and K.Z. grew and characterized the samples under the supervision of Y.W. K.D., G.W., K.Z., S.D., E.W., M.Y. and Hongyun Z. performed the ARPES measurements and analysed the ARPES data. J.D. and A.F. provided support for the ARPES experiments. P.D. and Z.X. performed the STM measurements. Haijun Z. performed the first-principles calculations presented in the manuscript. H.H. and W.D. repeated the calculation. K.D., H.Yao, Y.W., X.C. and S.Z. wrote the manuscript, and all authors commented on the manuscript.

Corresponding authors

Correspondence to Yang Wu, Xi Chen or Shuyun Zhou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1501 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, K., Wan, G., Deng, P. et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nature Phys 12, 1105–1110 (2016). https://doi.org/10.1038/nphys3871

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3871

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing