Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime

Abstract

The study of light–matter interaction has led to important advances in quantum optics and enabled numerous technologies. Over recent decades, progress has been made in increasing the strength of this interaction at the single-photon level. More recently, a major achievement has been the demonstration of the so-called strong coupling regime1,2, a key advancement enabling progress in quantum information science. Here, we demonstrate light–matter interaction over an order of magnitude stronger than previously reported, reaching the nonperturbative regime of ultrastrong coupling (USC). We achieve this using a superconducting artificial atom tunably coupled to the electromagnetic continuum of a one-dimensional waveguide. For the largest coupling, the spontaneous emission rate of the atom exceeds its transition frequency. In this USC regime, the description of atom and light as distinct entities breaks down, and a new description in terms of hybrid states is required3,4. Beyond light–matter interaction itself, the tunability of our system makes it a promising tool to study a number of important physical systems, such as the well-known spin-boson5 and Kondo models6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measurement set-up and devices.
Figure 2: Spectroscopy of devices with fixed coupling.
Figure 3: Tunable ultrastrong coupling device.
Figure 4: Normalized coupling rates and frequency renormalization.

Similar content being viewed by others

References

  1. Haroche, S. & Raimond, J.-M. Exploring the Quantum: Atoms, Cavities, and Photons (Oxford Univ. Press, 2006).

    Book  Google Scholar 

  2. Wallraff, A. et al. Circuit quantum electrodynamics: coherent coupling of a single photon to a Cooper pair box. Nature 431, 162–167 (2004).

    Article  ADS  Google Scholar 

  3. Peropadre, B., Zueco, D., Porras, D. & García-Ripoll, J. J. Nonequilibrium and nonperturbative dynamics of ultrastrong coupling in open lines. Phys. Rev. Lett. 111, 243602 (2013).

    Article  ADS  Google Scholar 

  4. Díaz-Camacho, G., Bermudez, A. & García-Ripoll, J. J. Dynamical polaron ansatz: a theoretical tool for the ultra-strong coupling regime of circuit QED. Phys. Rev. A 93, 043843 (2016).

    Article  ADS  Google Scholar 

  5. Leggett, A. J. et al. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1–85 (1987).

    Article  ADS  Google Scholar 

  6. Le Hur, K. Kondo resonance of a microwave photon. Phys. Rev. B 85, 140506 (2012).

    Article  ADS  Google Scholar 

  7. Shen, J.-T. & Fan, S. Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits. Phys. Rev. Lett. 95, 213001 (2005).

    Article  ADS  Google Scholar 

  8. Astafiev, O. et al. Resonance fluorescence of a single artificial atom. Science 327, 840–843 (2010).

    Article  ADS  Google Scholar 

  9. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  10. Hoi, I.-C. et al. Demonstration of a single-photon router in the microwave regime. Phys. Rev. Lett. 107, 073601 (2011).

    Article  ADS  Google Scholar 

  11. García-Álvarez, L. et al. Fermion–fermion scattering in quantum field theory with superconducting circuits. Phys. Rev. Lett. 114, 070502 (2015).

    Article  ADS  Google Scholar 

  12. Hoi, I.-C. et al. Giant cross-Kerr effect for propagating microwaves induced by an artificial atom. Phys. Rev. Lett. 111, 053601 (2013).

    Article  ADS  Google Scholar 

  13. van Loo, A. F. et al. Photon-mediated interactions between distant artificial atoms. Science 342, 1494–1496 (2013).

    Article  ADS  Google Scholar 

  14. Goban, A. et al. Superradiance for atoms trapped along a photonic crystal waveguide. Phys. Rev. Lett. 115, 063601 (2015).

    Article  ADS  Google Scholar 

  15. Arcari, M. et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603 (2014).

    Article  ADS  Google Scholar 

  16. Niemczyk, T. et al. Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat. Phys. 6, 772–776 (2010).

    Article  Google Scholar 

  17. Forn-Díaz, P. et al. Observation of the Bloch–Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime. Phys. Rev. Lett. 105, 237001 (2010).

    Article  ADS  Google Scholar 

  18. Ciuti, C., Bastard, G. & Carusotto, I. Quantum vacuum properties of the intersubband cavity polariton field. Phys. Rev. B 72, 115303 (2005).

    Article  ADS  Google Scholar 

  19. Casanova, J. et al. Deep strong coupling regime of the Jaynes–Cummings model. Phys. Rev. Lett. 105, 263603 (2010).

    Article  ADS  Google Scholar 

  20. Grifoni, M., Paladino, E. & Weiss, U. Dissipation, decoherence and preparation effects in the spin-boson system. Eur. Phys. J. B 10, 719–729 (1999).

    Article  ADS  Google Scholar 

  21. Gammaitoni, L., Hänggi, P., Jung, P. & Marchesoni, F. Stochastic resonance. Rev. Mod. Phys. 70, 223–287 (1998).

    Article  ADS  Google Scholar 

  22. Penttilä, J. S., Parts, U., Hakonen, P. J., Paalanen, M. A. & Sonin, E. B. Superconductor–insulator transition in a single Josephson junction. Phys. Rev. Lett. 82, 1004–1007 (1999).

    Article  ADS  Google Scholar 

  23. Sabín, C., Peropadre, B., Rey, M. D. & Martín-Martínez, E. Extracting past-future vacuum correlations using circuit QED. Phys. Rev. Lett. 109, 033602 (2012).

    Article  ADS  Google Scholar 

  24. Sánchez-Burillo, E., Zueco, D., García-Ripoll, J. J. & Martín-Moreno, L. Scattering in the ultrastrong regime: nonlinear optics with one photon. Phys. Rev. Lett. 113, 263604 (2014).

    Article  ADS  Google Scholar 

  25. Bourassa, J. et al. Ultrastrong coupling regime of cavity QED with phase-biased flux qubits. Phys. Rev. A 80, 032109 (2009).

    Article  ADS  Google Scholar 

  26. Mooij, J. E. et al. Josephson persistent-current qubit. Science 285, 1036–1039 (1999).

    Article  Google Scholar 

  27. Orgiazzi, J. L. et al. Flux qubits in a planar circuit quantum electrodynamics architecture: quantum control and decoherence. Phys. Rev. B 93, 104518 (2016).

    Article  ADS  Google Scholar 

  28. Peropadre, B. et al. Scattering of coherent states on a single artificial atom. New J. Phys. 15, 035009 (2013).

    Article  ADS  Google Scholar 

  29. Haeberlein, M. et al. Spin-boson model with an engineered reservoir in circuit quantum electrodynamics. Preprint at https://arXiv.org/abs/1506.09114 (2015).

  30. Yoshihara, F. et al. Superconducting qubit–oscillator circuit beyond the ultrastrong-coupling regime. Nat. Phys. http://dx.doi.org/10.1038/nphys3906 (2016).

  31. Peropadre, B., Forn-Díaz, P., Solano, E. & García-Ripoll, J. J. Switchable ultrastrong coupling. Phys. Rev. Lett. 105, 023601 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from NSERC of Canada, the Canadian Foundation for Innovation, the Ontario Ministry of Research and Innovation, Industry Canada, Canadian Microelectronics Corporation, EU FP7 FET-Open project PROMISCE, Spanish Mineco Project FIS2012-33022 and CAM Network QUITEMAD+. B.P. acknowledges the Air Force of Scientific Research for support under award FA9550-12-1-0046. The University of Waterloo’s Quantum NanoFab was used for this work. We thank A. J. Leggett and A. Garg for fruitful discussions, and M. Otto, S. Chang, A. M. Vadiraj and C. Deng for help with device fabrication and with the measurement set-ups.

Author information

Authors and Affiliations

Authors

Contributions

P.F.-D., C.M.W. and A.L. designed the experiment. P.F.-D. designed the devices and fabricated them. P.F.-D., C.M.W. and A.L. conducted the experiments. J.-L.O. provided input to device design and fabrication. M.A.Y. and R.B. assisted in numerical modelling of devices. J.J.G.-R. and B.P. provided theoretical support to interpret the measurements. P.F.-D., C.M.W. and A.L. performed the data analysis and wrote the manuscript with feedback from all authors. C.M.W. and A.L. supervised the project.

Corresponding authors

Correspondence to P. Forn-Díaz, C. M. Wilson or A. Lupascu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 894 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forn-Díaz, P., García-Ripoll, J., Peropadre, B. et al. Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime. Nature Phys 13, 39–43 (2017). https://doi.org/10.1038/nphys3905

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3905

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing