Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nonergodic diffusion of single atoms in a periodic potential

Abstract

Diffusion can be used to infer the microscopic features of a system from the observation of its macroscopic dynamics. Brownian motion accurately describes many diffusive systems, but non-Brownian and nonergodic features are often observed on short timescales. Here, we trap a single ultracold caesium atom in a periodic potential and measure its diffusion1,2,3. We engineer the particle–environment interaction to fully control motion over a broad range of diffusion constants and timescales. We use a powerful stroboscopic imaging method to detect single-particle trajectories and analyse both non-equilibrium diffusion properties and the approach to ergodicity4. Whereas the variance and two-time correlation function exhibit apparent Brownian motion at all times, higher-order correlations reveal strong non-Brownian behaviour. We additionally observe the slow convergence of the exponential displacement distribution to a Gaussian and—unexpectedly—a much slower approach to ergodicity5, in perfect agreement with an analytical continuous-time random-walk model6,7,8. Our experimental system offers an ideal testbed for the detailed investigation of complex diffusion processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stroboscopic position imaging sequence.
Figure 2: Characteristic time and flight distances.
Figure 3: Diffusion properties.
Figure 4: Approach to Gaussianity and ergodicity.

Similar content being viewed by others

References

  1. Risken, H. The Fokker–Planck Equation (Springer, 1989).

    Book  Google Scholar 

  2. Fulde, P., Pietronero, L., Schneider, W. R. & Strässler, S. Problem of Brownian motion in a periodic potential. Phys. Rev. Lett. 35, 1776–1779 (1975).

    Article  ADS  Google Scholar 

  3. Barone, A. & Paterno, G. Physics and Applications of the Josephson Effect (Wiley, 1982).

    Book  Google Scholar 

  4. Dorfman, J. R. An Introduction to Chaos in Nonequilibrium Statistical Mechanics (Cambridge Univ. Press, 1999).

    Book  Google Scholar 

  5. Lutz, E. & Renzoni, F. Beyond Boltzmann–Gibbs statistical mechanics in optical lattices. Nat. Phys. 9, 615–619 (2013).

    Article  Google Scholar 

  6. Montroll, E. W. & Weiss, G. H. Random walks on lattices. II. J. Math. Phys. 6, 167–181 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  7. Klafter, J. & Sokolov, I. M. First Steps in Random Walks (Oxford Univ. Press, 2011).

    Book  Google Scholar 

  8. Scher, H. & Lax, M. Stochastic transport in a disordered solid I. Theory. Phys. Rev. B 7, 4491–4502 (1973).

    Article  ADS  MathSciNet  Google Scholar 

  9. Frey, E. & Kroy, K. Brownian motion: a paradigm of soft matter and biological physics. Ann. Phys. 14, 20–50 (2005).

    Article  Google Scholar 

  10. Kramers, H. A. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284–304 (1940).

    Article  ADS  MathSciNet  Google Scholar 

  11. Wang, B., Anthony, S. M., Bae, S. C. & Granick, S. Anomalous yet Brownian. Proc. Natl Acad. Sci. USA 106, 15160–15164 (2009).

    Article  ADS  Google Scholar 

  12. Li, T., Kheifets, S., Medellin, D. & Raizen, M. G. Measurement of the instantaneous velocity of a Brownian particle. Science 328, 1673–1675 (2010).

    Article  ADS  Google Scholar 

  13. Han, Y. et al. Brownian motion of an ellipsoid. Science 314, 626–630 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  14. Fakhri, N., MacKintosh, F. C., Lounis, B., Cognet, L. & Pasquali, M. Brownian motion of stiff filaments in a crowded environment. Science 330, 1804–1807 (2010).

    Article  ADS  Google Scholar 

  15. D’Anna, G., Mayor, P., Barrat, A., Loreto, V. & Nori, F. Observing Brownian motion in vibration-fluidized granular matter. Nature 424, 909–912 (2003).

    Article  ADS  Google Scholar 

  16. La Porta, A., Voth, G. A., Crawford, A. M., Alexander, J. & Bodenschatz, E. Fluid particle accelerations in fully developed turbulence. Nature 409, 1017–1019 (2001).

    Article  ADS  Google Scholar 

  17. Wang, B., Kuo, J., Bae, S. C. & Granick, S. When Brownian diffusion is not Gaussian. Nat. Mater. 11, 481–485 (2012).

    Article  ADS  Google Scholar 

  18. Brokmann, X. et al. Statistical aging and non ergodicity in the fluorescence of single nanocrystals. Phys. Rev. Lett. 90, 120601 (2003).

    Article  ADS  Google Scholar 

  19. Jeon, J. H. et al. In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. Phys. Rev. Lett. 106, 048103 (2011).

    Article  ADS  Google Scholar 

  20. He, Y., Burov, S., Metzler, R. & Barkai, E. Random time-scale invariant diffusion and transport coefficients,. Phys. Rev. Lett. 101, 058101 (2008).

    Article  ADS  Google Scholar 

  21. Manzo, C. et al. Weak ergodicity breaking of receptor motion in living cells stemming from random diffusivity. Phys. Rev. X 5, 011021 (2015).

    Google Scholar 

  22. Lutz, E. Power-law tail distributions and nonergodicity. Phys. Rev. Lett. 93, 190602 (2004).

    Article  ADS  Google Scholar 

  23. Viterbi, A. J. & Omura, J. K. Principles of Digital Communication and Coding (Dover, 2013).

    MATH  Google Scholar 

  24. Sancho, J. M., Lacasta, A. M., Lindenberg, K., Sokolov, I. M. & Romero, A. H. Diffusion on a solid surface: anomalous is normal. Phys. Rev. Lett. 92, 250601 (2004).

    Article  ADS  Google Scholar 

  25. Sagi, Y., Brook, M., Almog, I. & Davidson, N. Observation of anomalous diffusion and fractional self-similarity in one dimension. Phys. Rev. Lett. 108, 093002 (2012).

    Article  ADS  Google Scholar 

  26. Douglas, P., Bergamini, S. & Renzoni, F. Tunable Tsallis distributions in dissipative optical lattices. Phys. Rev. Lett. 96, 110601 (2006).

    Article  ADS  Google Scholar 

  27. Katori, H., Schlipf, S. & Walther, H. Anomalous dynamics of a single ion in an optical lattice. Phys. Rev. Lett. 79, 2221–2224 (1997).

    Article  ADS  Google Scholar 

  28. Burov, S., Jeon, J.-H., Metzler, R. & Barkai, E. Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking. Phys. Chem. Chem. Phys. 13, 1800–1812 (2011).

    Article  Google Scholar 

  29. Metcalf, H. J. & van der Straten, P. Laser Cooling and Trapping (Springer, 2002).

    Google Scholar 

  30. Risken, H. & Vollmer, H. D. Correlation functions for the diffusive motion of particles in a periodic potential. Z. Phys. B 31, 209–216 (1978).

    Article  ADS  Google Scholar 

  31. Deng, W. & Barkai, E. Ergodic properties of fractional Brownian–Langevin motion. Phys. Rev. E 79, 011112 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  32. Dechant, A., Lutz, E., Kessler, D. A. & Barkai, E. Fluctuations of time averages for Langevin dynamics in a binding force field. Phys. Rev. Lett. 107, 240603 (2011).

    Article  ADS  Google Scholar 

  33. Hohmann, M. et al. Neutral impurities in a Bose–Einstein condensate for simulation of the Fröhlich-polaron. EPJ Quantum Technol. 2, 1–15 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the ERC Starting Grant No. 278208, the Collaborative Project TherMiQ (Grant Agreement 618074) and the SFB/TRR49. T.L. acknowledges funding by Carl Zeiss Stiftung. D.M. is a recipient of a DFG-fellowship through the Excellence Initiative by the Graduate School Materials Science in Mainz (GSC 266). F.S. acknowledges funding by the Studienstiftung des deutschen Volkes.

Author information

Authors and Affiliations

Authors

Contributions

A.W. and F.K. conceived the experiment. F.K., M.H., T.L., D.M. and F.S. took experimental data, F.K. analysed the data. A.D. and E.L. developed the theoretical model and performed numerical simulations. All authors contributed in interpretation, discussion and writing of the manuscript.

Corresponding author

Correspondence to Artur Widera.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 252 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kindermann, F., Dechant, A., Hohmann, M. et al. Nonergodic diffusion of single atoms in a periodic potential. Nature Phys 13, 137–141 (2017). https://doi.org/10.1038/nphys3911

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3911

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing