Abstract
Originating from relativistic quantum field theory, Dirac fermions have been invoked recently to explain various peculiar phenomena in condensed-matter physics, including the novel quantum Hall effect in graphene1,2, the magnetic-field-driven metal–insulator-like transition in graphite3,4, superfluidity in 3He (ref. 5) and the exotic pseudogap phase of high-temperature superconductors6,7. Despite their proposed key role in those systems, direct experimental evidence of Dirac fermions has been limited. Here, we report the first direct observation of relativistic Dirac fermions with linear dispersion near the Brillouin zone (BZ) corner H, which coexist with quasiparticles that have a parabolic dispersion near another BZ corner K. In addition, we also report a large electron pocket that we attribute to defect-induced localized states. Thus, graphite presents a system in which massless Dirac fermions, quasiparticles with finite effective mass and defect states all contribute to the low-energy electronic dynamics.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Zhang, Y. B., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).
Novoselov, K. S. et al. Two-dimensional gas of Dirac fermions in graphene. Nature 438, 197–200 (2005).
Kopelevich, Y., Torres, J. H. S. & da Silva, R. R. Reentrant metallic behavior of graphite in the quantum limit. Phys. Rev. Lett. 90, 156402 (2003).
Du, X., Tsai, S.-W., Maslov, D. L. & Hebard, A. F. Metal-insulator-like behavior in semimetallic bismuth and graphite. Phys. Rev. Lett. 94, 166601 (2005).
Volovik, G. E. Field theory in superfluid 3He: what are the lessons for particle physics, gravity and high-temperature superconductivity? Proc. Natl Acad. Sci. 96, 6042–6047 (1999).
Rantner, W. & Wen, X.-G. Electron spectral function and algebraic spin liquid for the normal state of underdoped high Tc superconductors. Phys. Rev. Lett. 86, 003871 (2001).
Franz, M. & Tesanovic, Z. Algebraic Fermi liquid from phase fluctuations: ‘topological’ Fermions, votex ‘Berryons’, and QED3 theory of cuprate superconductors. Phys. Rev. Lett. 87, 257003 (2001).
González, J., Guinea, F. & Vozmediano, M. A. H. Unconventional quasiparticle lifetime in graphite. Phys. Rev. Lett. 77, 003589 (1996).
Luk’yanchuk, I. A. & Kopelevich, Y. Phase analysis of quantum oscillations in graphite. Phys. Rev. Lett. 93, 166402 (2004).
Shirley, E. L., Terminello, L. J., Santoni, A. & Himpsel, F. J. Brillouin-zone-selection effects in graphite photoelectron angular distributions. Phys. Rev. B 51, 013614 (1995).
Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 51, 1–186 (2002).
Sugawara, K., Sato, T., Souma, S., Takahashi, T. & Suematsu, H. Fermi surface and edge-localized states in graphite studied by high-resolution angle-resolved photoemission spectroscopy. Phys. Rev. B 73, 045124 (2006).
Soule, D. E. Magnetic field dependence of the Hall effect and magnetoresistance in graphite single crystals. Phys. Rev. 112, 698–707 (1958).
Zhang, Y. B., Small, J. P., Amori, M. E. S. & Kim, P. Electric field modulation of galvanomagnetic properties of mesoscopic graphite. Phys. Rev. Lett. 94, 176803 (2005).
Toy, W. W., Dresselhaus, M. S. & Dresselhaus, G. Minority carriers in graphite and the H-point magnetoreflection spectra. Phys. Rev. B 15, 4077–4090 (1977).
Galt, J. K., Yager, W. A. & Dail, H. W. Jr. Cyclotron resonance effects in graphite. Phys. Rev. 103, 1586–1587 (1956).
Kobayashi, Y., Fukui, K.-I., Enoki, T., Kusakabe, K. & Kaburagi, Y. Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys. Rev. B 71, 193406 (2005).
Peres, N. M. R., Guinea, F. & Castro Neto, A. H. Electronic properties of disordered two-dimensional carbon. Phys. Rev. B 73, 125411 (2006).
Pereira, V. M., Guinea, F., Lopes Dos Santos, J. M. B., Peres, N. M. R. & Castro Neto, A. H. Disorder induced localized states in graphene. Phys. Rev. Lett. 96, 036801 (2006).
Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 017954 (1996).
Wakabayashi, K., Fujita, M., Ajiki, H. & Sigrist, M. Electronic and magnetic properties of nanographite ribbons. Phys. Rev. B 59, 008271 (1999).
Law, A. R., Johnson, M. T. & Hughes, H. P. Synchrontron-radiation-excited angle-resolved photoemission from single-crystal graphite. Phys. Rev. B 34, 004289 (1986).
Himpsel, F. J. Angle-resolved measurements of the photoemission of electrons in the study of solids. Adv. Phys. 32, 1–51 (1983).
Hüfner, S. Photoelectron Spectroscopy (Springer, Berlin, 1995).
Charlier, J.-C., Gonze, X. & Michenaud, J.-P. First principles study of the electronic properties of graphite. Phys. Rev. B 43, 004579 (1991).
Nilsson, J., Castro Neto, A. H., Guinea, F. & Peres, N. M. R. Electronic properties of graphene multilayers. Preprint at <http://www.arxiv.org/abs/cond-mat/0604106> (2006).
Acknowledgements
We thank A. Castro Neto, V. Oganesyan, A. Bill, K. McElroy, C. M. Jozwiak and D. Garcia for useful discussions and E. Domning and B. Smith for beam line 12.0.1 control software. This work was supported by the National Science Foundation through Grant No. DMR03-49361, the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the US Department of Energy under Contract No. DEAC03-76SF00098 and by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under the Department of Energy Contract No. DE-AC02-05CH11231.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Zhou, S., Gweon, GH., Graf, J. et al. First direct observation of Dirac fermions in graphite. Nature Phys 2, 595–599 (2006). https://doi.org/10.1038/nphys393
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys393
This article is cited by
-
Enhanced optical conductivity and many-body effects in strongly-driven photo-excited semi-metallic graphite
Nature Communications (2023)
-
Nanophotonic modulator based on Silicon-ITO heterojunction and slot waveguide with 2D-graphene sheet
Journal of Optics (2023)
-
A ferromagnetic hybrid Weyl semimetal in two dimensions: the monolayer AgCrS2
Journal of Materials Science (2023)
-
Observation of interaction-induced phenomena of relativistic quantum mechanics
Communications Physics (2021)
-
Computational Study of Electronic and Thermoelectric Properties of ZnO/Graphene Heterostructures
International Journal of Thermophysics (2021)