Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

First direct observation of Dirac fermions in graphite

Abstract

Originating from relativistic quantum field theory, Dirac fermions have been invoked recently to explain various peculiar phenomena in condensed-matter physics, including the novel quantum Hall effect in graphene1,2, the magnetic-field-driven metal–insulator-like transition in graphite3,4, superfluidity in 3He (ref. 5) and the exotic pseudogap phase of high-temperature superconductors6,7. Despite their proposed key role in those systems, direct experimental evidence of Dirac fermions has been limited. Here, we report the first direct observation of relativistic Dirac fermions with linear dispersion near the Brillouin zone (BZ) corner H, which coexist with quasiparticles that have a parabolic dispersion near another BZ corner K. In addition, we also report a large electron pocket that we attribute to defect-induced localized states. Thus, graphite presents a system in which massless Dirac fermions, quasiparticles with finite effective mass and defect states all contribute to the low-energy electronic dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Linear Λ-shaped dispersion near the BZ corner H.
Figure 2: Constant energy maps taken near the H point, showing that the electronic structure is isotropic in the kxky plane from EF to −0.6 eV.
Figure 3: Detailed low-energy dispersion near the H point shows that low-energy excitations are Dirac fermions with the Dirac point slightly above EF.
Figure 4: Detailed dispersion near K, which shows that quasiparticles with finite effective mass and defect-induced localized states also contribute to the low-energy electronic dynamics.
Figure 5: Dispersions measured near H and K, showing the general consistency of the extracted kz values.

Similar content being viewed by others

References

  1. Zhang, Y. B., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article  ADS  Google Scholar 

  2. Novoselov, K. S. et al. Two-dimensional gas of Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  ADS  Google Scholar 

  3. Kopelevich, Y., Torres, J. H. S. & da Silva, R. R. Reentrant metallic behavior of graphite in the quantum limit. Phys. Rev. Lett. 90, 156402 (2003).

    Article  ADS  Google Scholar 

  4. Du, X., Tsai, S.-W., Maslov, D. L. & Hebard, A. F. Metal-insulator-like behavior in semimetallic bismuth and graphite. Phys. Rev. Lett. 94, 166601 (2005).

    Article  ADS  Google Scholar 

  5. Volovik, G. E. Field theory in superfluid 3He: what are the lessons for particle physics, gravity and high-temperature superconductivity? Proc. Natl Acad. Sci. 96, 6042–6047 (1999).

    Article  ADS  Google Scholar 

  6. Rantner, W. & Wen, X.-G. Electron spectral function and algebraic spin liquid for the normal state of underdoped high Tc superconductors. Phys. Rev. Lett. 86, 003871 (2001).

    Article  ADS  Google Scholar 

  7. Franz, M. & Tesanovic, Z. Algebraic Fermi liquid from phase fluctuations: ‘topological’ Fermions, votex ‘Berryons’, and QED3 theory of cuprate superconductors. Phys. Rev. Lett. 87, 257003 (2001).

    Article  ADS  Google Scholar 

  8. González, J., Guinea, F. & Vozmediano, M. A. H. Unconventional quasiparticle lifetime in graphite. Phys. Rev. Lett. 77, 003589 (1996).

    Article  ADS  Google Scholar 

  9. Luk’yanchuk, I. A. & Kopelevich, Y. Phase analysis of quantum oscillations in graphite. Phys. Rev. Lett. 93, 166402 (2004).

    Article  ADS  Google Scholar 

  10. Shirley, E. L., Terminello, L. J., Santoni, A. & Himpsel, F. J. Brillouin-zone-selection effects in graphite photoelectron angular distributions. Phys. Rev. B 51, 013614 (1995).

    Article  Google Scholar 

  11. Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 51, 1–186 (2002).

    Article  ADS  Google Scholar 

  12. Sugawara, K., Sato, T., Souma, S., Takahashi, T. & Suematsu, H. Fermi surface and edge-localized states in graphite studied by high-resolution angle-resolved photoemission spectroscopy. Phys. Rev. B 73, 045124 (2006).

    Article  ADS  Google Scholar 

  13. Soule, D. E. Magnetic field dependence of the Hall effect and magnetoresistance in graphite single crystals. Phys. Rev. 112, 698–707 (1958).

    Article  ADS  Google Scholar 

  14. Zhang, Y. B., Small, J. P., Amori, M. E. S. & Kim, P. Electric field modulation of galvanomagnetic properties of mesoscopic graphite. Phys. Rev. Lett. 94, 176803 (2005).

    Article  ADS  Google Scholar 

  15. Toy, W. W., Dresselhaus, M. S. & Dresselhaus, G. Minority carriers in graphite and the H-point magnetoreflection spectra. Phys. Rev. B 15, 4077–4090 (1977).

    Article  ADS  Google Scholar 

  16. Galt, J. K., Yager, W. A. & Dail, H. W. Jr. Cyclotron resonance effects in graphite. Phys. Rev. 103, 1586–1587 (1956).

    Article  ADS  Google Scholar 

  17. Kobayashi, Y., Fukui, K.-I., Enoki, T., Kusakabe, K. & Kaburagi, Y. Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys. Rev. B 71, 193406 (2005).

    Article  ADS  Google Scholar 

  18. Peres, N. M. R., Guinea, F. & Castro Neto, A. H. Electronic properties of disordered two-dimensional carbon. Phys. Rev. B 73, 125411 (2006).

    Article  ADS  Google Scholar 

  19. Pereira, V. M., Guinea, F., Lopes Dos Santos, J. M. B., Peres, N. M. R. & Castro Neto, A. H. Disorder induced localized states in graphene. Phys. Rev. Lett. 96, 036801 (2006).

    Article  ADS  Google Scholar 

  20. Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 017954 (1996).

    Article  Google Scholar 

  21. Wakabayashi, K., Fujita, M., Ajiki, H. & Sigrist, M. Electronic and magnetic properties of nanographite ribbons. Phys. Rev. B 59, 008271 (1999).

    Article  ADS  Google Scholar 

  22. Law, A. R., Johnson, M. T. & Hughes, H. P. Synchrontron-radiation-excited angle-resolved photoemission from single-crystal graphite. Phys. Rev. B 34, 004289 (1986).

    Article  ADS  Google Scholar 

  23. Himpsel, F. J. Angle-resolved measurements of the photoemission of electrons in the study of solids. Adv. Phys. 32, 1–51 (1983).

    Article  ADS  Google Scholar 

  24. Hüfner, S. Photoelectron Spectroscopy (Springer, Berlin, 1995).

    Book  Google Scholar 

  25. Charlier, J.-C., Gonze, X. & Michenaud, J.-P. First principles study of the electronic properties of graphite. Phys. Rev. B 43, 004579 (1991).

    Article  Google Scholar 

  26. Nilsson, J., Castro Neto, A. H., Guinea, F. & Peres, N. M. R. Electronic properties of graphene multilayers. Preprint at <http://www.arxiv.org/abs/cond-mat/0604106> (2006).

Download references

Acknowledgements

We thank A. Castro Neto, V. Oganesyan, A. Bill, K. McElroy, C. M. Jozwiak and D. Garcia for useful discussions and E. Domning and B. Smith for beam line 12.0.1 control software. This work was supported by the National Science Foundation through Grant No. DMR03-49361, the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the US Department of Energy under Contract No. DEAC03-76SF00098 and by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under the Department of Energy Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lanzara.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, S., Gweon, GH., Graf, J. et al. First direct observation of Dirac fermions in graphite. Nature Phys 2, 595–599 (2006). https://doi.org/10.1038/nphys393

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys393

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing