Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magnetic energy change available to superconducting condensation in optimally doped YBa2Cu3O6.95

Abstract

Understanding the magnetic excitations in high-temperature (high-Tc) copper-oxide superconductors is important because they may mediate the electron pairing for superconductivity1,2. By determining the wavevector (Q) and energy (ħω) dependence of the magnetic excitations, it is possible to calculate the change in the exchange energy available to the superconducting condensation energy3,4,5. For the high-Tc superconductor YBa2Cu3O6+x, the most prominent feature in the magnetic excitations is the resonance6,7,8,9,10,11,12. Suggestions that the resonance contributes a major part of the superconducting condensation4,13 have not gained acceptance because the resonance is only a small portion of the total magnetic scattering12,13,14. Here, we report an extensive mapping of magnetic excitations for YBa2Cu3O6.95 (Tc93 K). Absolute intensity measurements of the full spectra allow us to estimate the change in the magnetic exchange energy between the normal and superconducting states, which is about 15 times larger than the superconducting condensation energy15,16—more than enough to provide the driving force for high-Tc superconductivity in YBa2Cu3O6.95.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of Q-and ω-dependence of dynamic susceptibility for YBCO.
Figure 2: Summary of the temperature dependence of the optical and acoustic scattering at the resonant energy for YBCO.
Figure 3: Temperature difference (15–100 K) at various energies for optical mode defined as scattering with cos2(qzd/2)>0.8.
Figure 4: Temperature difference spectra (15–100 K) at various energies for acoustic mode defined as any scattering with sin2(qzd/2)>0.8 (see Fig. 1b).

Similar content being viewed by others

References

  1. Scalapino, D. J. The case for d x 2 − y 2 pairing in the cuprate superconductors. Phys. Rep. 250, 330–365 (1995).

    Article  ADS  Google Scholar 

  2. Chubukov, A., Pines, D. & Schmalian, J. in The Physics of Superconductors, Vol I, Conventional and High-T c Superconductors (eds Bennemann, K. H. & Ketterson, J. B.) 495–590 (Springer, Berlin, 2003).

    Google Scholar 

  3. Scalapino, D. J. & White, S. R. Superconducting condensation energy and an antiferromagnetic exchange-based pairing mechanism. Phys. Rev. B 58, 8222–8224 (1998).

    Article  ADS  Google Scholar 

  4. Demler, E. & Zhang, S.-C. Quantitative test of a microscopic mechanism of high-temperature superconductivity. Nature 396, 733–735 (1998).

    Article  ADS  Google Scholar 

  5. Maier, Th. A. On the nature of pairing in the two-dimensional t–J model. Physica B 359–361, 512–514 (2005).

    Article  ADS  Google Scholar 

  6. Rossat-Mignod, J. et al. Neutron scattering study of the YBa2Cu3O6+x system. Physica C 185, 86–92 (1991).

    Article  ADS  Google Scholar 

  7. Mook, H. A. et al. Polarized neutron determination of the magnetic excitations in YBa2Cu3O7 . Phys. Rev. Lett. 70, 3490–3493 (1993).

    Article  ADS  Google Scholar 

  8. Mook, H. A. et al. Spin fluctuations in YBa2Cu3O6.6 . Nature 395, 580–582 (1998).

    Article  ADS  Google Scholar 

  9. Fong, H. F. et al. Spin susceptibility in underdoped YBa2Cu3O6+x . Phys. Rev. B 61, 14773–14786 (2000).

    Article  ADS  Google Scholar 

  10. Dai, P., Mook, H. A., Hunt, R. D. & Doğan, F. Evolution of the resonance and incommensurate spin fluctuations in superconducting YBa2Cu3O6+x . Phys. Rev. B 63, 054525 (2001).

    Article  ADS  Google Scholar 

  11. Stock, C. et al. From incommensurate to dispersive spin-fluctuations: The high-energy inelastic spectrum in superconducting YBa2Cu3O6.5 . Phys. Rev. B 71, 024522 (2005).

    Article  ADS  Google Scholar 

  12. Hayden, S. M., Mook, H. A., Dai, P., Perring, T. G. & Doğan, F. The structure of the high-energy spin excitations in a high-transition-temperature superconductor. Nature 429, 531–534 (2004).

    Article  ADS  Google Scholar 

  13. Dai, P. et al. The magnetic excitation spectrum and thermodynamics of high-T c superconductors. Science 284, 1344–1347 (1999).

    Article  ADS  Google Scholar 

  14. Kee, H-Y., Kivelson, S. A. & Aeppli, G. Spin-1 neutron resonance peak cannot account for electronic anomalies in the cuprate superconductors. Phys. Rev. Lett. 88, 257002 (2002).

    Article  ADS  Google Scholar 

  15. Loram, J. W., Mirza, K. A., Cooper, J. R. & Tallon, J. L. Specific heat evidence on the normal state pseudogap. J. Phys. Chem. Solids 59, 2091–2094 (1998).

    Article  ADS  Google Scholar 

  16. Lortz, R. et al. Evolution of the specific-heat anomaly of the high-temperature superconductor in YBa2Cu3O7 under the influence of doping through application of pressure up to 10 GPa. J. Phys. Condens. Matter 17, 4135–4145 (2005).

    Article  ADS  Google Scholar 

  17. Woo, H. et al. Mapping spin-wave dispersions in stripe-ordered La2xSrxNiO4 (x=0.275,0.333). Phys. Rev. B 72, 064437 (2005).

    Article  ADS  Google Scholar 

  18. Reznik, D. et al. Dispersion of magnetic excitations in optimally doped superconducting YBa2Cu3O6.95 . Phys. Rev. Lett. 93, 207003 (2004).

    Article  ADS  Google Scholar 

  19. Regnault, L. P. et al. Spin dynamics in the high-T c superconducting system YBa2Cu3O6+x . Physica B 213/214, 48–53 (1995).

    Article  ADS  Google Scholar 

  20. Chen, W. Q. & Weng, Z. Y. Spin dynamics in a doped-Mott-insulator superconductor. Phys. Rev. B 71, 134516 (2005).

    Article  ADS  Google Scholar 

  21. Hayden, S. M. et al. High-frequency spin waves in YBa2Cu3O6.15 . Phys. Rev. B 54, R6905–R6908 (1996).

    Article  ADS  Google Scholar 

  22. Reznik, D. et al. Direct observation of optical magnons in YBa2Cu3O6.2 . Phys. Rev. B 53, R14741–R14744 (1996).

    Article  ADS  Google Scholar 

  23. Dahm, T. et al. Nodal quasiparticle lifetimes in cuprate superconductors. Phys. Rev. B 72, 214512 (2005).

    Article  ADS  Google Scholar 

  24. Pailhes, S. et al. Resonant magnetic excitations at high energy in superconducting YBa2Cu3O6.85 . Phys. Rev. Lett. 93, 167001 (2004).

    Article  ADS  Google Scholar 

  25. Pailhes, S. et al. Two resonant magnetic modes in an overdoped high T c superconductor. Phys. Rev. Lett. 91, 237002 (2003).

    Article  ADS  Google Scholar 

  26. Chakravarty, S. & Kee, H-Y. Measuring condensate fraction in superconductors. Phys. Rev. B 61, 14821–14824 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank E. Dagotto, Z. Y. Wen and F. C. Zhang for helpful discussions. This work is supported by the US DOE Office of Science, Division of Materials Science, Basic Energy Sciences under contract No. DE-FG02-05ER46202 (H.W. and P.D.). Oak Ridge National Laboratory is supported by the US DOE under contract No. DE-AC05-00OR22725 with UT/Battelle LLC. S.M.H. is supported by the UK EPSRC. D.J.S. would like to acknowledge the Center for Nanophase Material Science at Oak Ridge National Laboratory for their support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengcheng Dai or H. A. Mook.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woo, H., Dai, P., Hayden, S. et al. Magnetic energy change available to superconducting condensation in optimally doped YBa2Cu3O6.95. Nature Phys 2, 600–604 (2006). https://doi.org/10.1038/nphys394

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys394

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing