Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cooperatively enhanced dipole forces from artificial atoms in trapped nanodiamonds

Abstract

Optical trapping is a powerful tool to manipulate small particles, from micrometre-size beads in liquid environments1 to single atoms in vacuum2. The trapping mechanism relies on the interaction between a dipole and the electric field of laser light. In atom trapping, the dominant contribution to the associated force typically comes from the allowed optical transition closest to the laser wavelength, whereas for mesoscopic particles it is given by the polarizability of the bulk material. Here, we show that for nanoscale diamond crystals containing a large number of artificial atoms, nitrogen–vacancy colour centres, the contributions from both the nanodiamond and the colour centres to the optical trapping strength can be simultaneously observed in a noisy liquid environment. For wavelengths around the zero-phonon line transition of the colour centres, we observe a 10% increase of overall trapping strength. The magnitude of this effect suggests that due to the large density of centres, cooperative effects between the artificial atoms contribute to the observed modification of the trapping strength. Our approach may enable the study of cooperativity in nanoscale solid-state systems and the use of atomic physics techniques in the field of nano-manipulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trapping nanodiamonds.
Figure 2: Measured relative trap stiffness.
Figure 3: Cooperative dipole force.

Similar content being viewed by others

References

  1. Neuman, K. C. & Block, S. M. Optical trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004).

    Article  ADS  Google Scholar 

  2. Grimm, R., Weidemüller, M. & Ovchinnikov, Y. B. Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).

    Article  ADS  Google Scholar 

  3. Vetsch, E. et al. Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. Phys. Rev. Lett. 104, 203603 (2010).

    Article  ADS  Google Scholar 

  4. Dienerowitz, M., Mazilu, M. & Dholakia, K. Optical manipulation of nanoparticles: a review. J. Nanophoton. 2, 021875 (2008).

    Article  Google Scholar 

  5. Li, Y. et al. Giant resonant light forces in microspherical photonics. Light Sci. Appl. 2, e64 (2013).

    Article  Google Scholar 

  6. Zambrana-Puyalto, X., Vidal, X. & Molina-Terriza, G. Excitation of single multipolar modes with engineered cylindrically symmetric fields. Opt. Express 20, 24536–24544 (2012).

    Article  ADS  Google Scholar 

  7. Chang, D. E. et al. Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl Acad. Sci. USA 107, 1005–1010 (2010).

    Article  ADS  Google Scholar 

  8. Romero-Isart, O., Juan, M. L., Quidant, R. & Cirac, J. I. Towards quantum superposition of living organisms. New J. Phys. 12, 033015 (2010).

    Article  ADS  Google Scholar 

  9. Garraway, B. M. The Dicke model in quantum optics: Dicke model revisited. Phil. Trans. R. Soc. A 369, 1137–1155 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  10. Panat, P. V. & Lawande, S. V. Cooperative effects on optical forces—Dicke’s bullet. Int. J. Mod. Phys. B 16, 3787–3795 (2002).

    Article  ADS  Google Scholar 

  11. Bienaimé, T., Bachelard, R., Piovella, N. & Kaiser, R. Cooperativity in light scattering by cold atoms. Fortschr. Phys. 61, 377–392 (2013).

    Article  MathSciNet  Google Scholar 

  12. Pellegrino, J. et al. Observation of suppression of light scattering induced by dipole–dipole interactions in a cold-atom ensemble. Phys. Rev. Lett. 113, 133602 (2014).

    Article  ADS  Google Scholar 

  13. Black, A. T., Chan, H. W. & Vuletić, V. Observation of collective friction forces due to spatial self-organization of atoms: from Rayleigh to Bragg scattering. Phys. Rev. Lett. 91, 203001 (2003).

    Article  ADS  Google Scholar 

  14. Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    Article  ADS  Google Scholar 

  15. McGuinness, L. P. et al. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat. Nanotech. 6, 358–363 (2011).

    Article  ADS  Google Scholar 

  16. Horowitz, V. R., Alemán, B. J., Christle, D. J., Cleland, A. N. & Awschalom, D. D. Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds. Proc. Natl Acad. Sci. USA 109, 13493–13497 (2012).

    Article  ADS  Google Scholar 

  17. Geiselmann, M. et al. Three-dimensional optical manipulation of a single electron spin. Nat. Nanotech. 8, 175–179 (2013).

    Article  ADS  Google Scholar 

  18. Neukirch, L. P., Gieseler, J., Quidant, R., Novotny, L. & Vamivakas, A. N. Observation of nitrogen vacancy photoluminescence from an optically levitated nanodiamond. Opt. Lett. 38, 2976–2979 (2013).

    Article  ADS  Google Scholar 

  19. Zemánek, P., Jonáš, A., Šrámek, L. & Liška, M. Optical trapping of Rayleigh particles using a Gaussian standing wave. Opt. Commun. 151, 273–285 (1998).

    Article  ADS  Google Scholar 

  20. Aslam, N., Waldherr, G., Neumann, P., Jelezko, F. & Wrachtrup, J. Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection. New J. Phys. 15, 013064 (2013).

    Article  ADS  Google Scholar 

  21. Gieseler, J., Novotny, L. & Quidant, R. Thermal nonlinearities in a nanomechanical oscillator. Nat. Phys. 9, 806–810 (2013).

    Article  Google Scholar 

  22. Fu, C. C. et al. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl Acad. Sci. USA 104, 727–732 (2007).

    Article  ADS  Google Scholar 

  23. Fu, K.-M. C. et al. Observation of the dynamic Jahn–Teller effect in the excited states of nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 103, 256404 (2009).

    Article  ADS  Google Scholar 

  24. Siyushev, P. et al. Low-temperature optical characterization of a near-infrared single-photon emitter in nanodiamonds. New J. Phys. 11, 113029 (2009).

    Article  ADS  Google Scholar 

  25. Dicke, R. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1958).

    Article  ADS  Google Scholar 

  26. Bradac, C. et al. Observation of room-temperature spontaneous superradiance from single diamond nanocrystals. Preprint at https://arXiv.org/abs/1608.03119(2016).

  27. Gross, M. & Harroche, S. Superradiance: an essay on the theory of collective spontaneous emission. Phys. Rep. 93, 301–396 (1982).

    Article  ADS  Google Scholar 

  28. Burnham, K. & Anderson, D. Model Selection and Multimodel Inference a Practical Information-Theoretic Approach (Springer, 2002).

    MATH  Google Scholar 

  29. Vlasov, I. I. et al. Molecular-sized fluorescent nanodiamonds. Nat. Nanotech. 9, 54–58 (2014).

    Article  ADS  Google Scholar 

  30. Rogers, L. J. et al. Electronic structure of the negatively charged silicon-vacancy center in diamond. Phys. Rev. B 89, 235101 (2014).

    Article  ADS  Google Scholar 

  31. Juan, M. L., Molina-Terriza, G., Volz, T. & Romero-Isart, O. Near-field levitated quantum optomechanics with nanodiamonds. Phys. Rev. A 94, 023841 (2016).

    Article  ADS  Google Scholar 

  32. Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M. & Wineland, D. J. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714–4717 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  33. Mandel, O. et al. Controlled collisions for multi-particle entanglement of optically trapped atoms. Nature 425, 937–940 (2003).

    Article  ADS  Google Scholar 

  34. Bradac, C., Gaebel, T., Naidoo, N., Rabeau, J. R. & Barnard, A. S. Prediction and measurement of the size-dependent stability of fluorescence in diamond over the entire nanoscale. Nano Lett. 9, 3555–3564 (2009).

    Article  ADS  Google Scholar 

  35. Breunig, M. M., Kriegel, H.-P., Ng, R. T. & Sander, J. LOF: identifying density-based local outliers. SIGMOD Rec. 29, 93–104 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

We thank O. Romero-Isart for useful discussions. This work was funded by the Australian Research Council Centre of Excellence for Engineered Quantum Systems (EQuS) CE 110001013. G.M.-T. acknowledges funding by the Australian Research Council Future Fellowship programme.

Author information

Authors and Affiliations

Authors

Contributions

M.L.J. and T.V. conceived the research project following the initial idea by T.V. M.L.J., C.B. and B.B. performed the measurements, and M.L.J., C.B., B.B. and T.V. analysed the data. All authors discussed the data. M.L.J., M.J. and G.B. performed the theoretical calculations presented in the manuscript. M.L.J., C.B., G.M.-T. and T.V. wrote the manuscript, and all authors commented on the manuscript.

Corresponding authors

Correspondence to Mathieu L. Juan or Thomas Volz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 897 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juan, M., Bradac, C., Besga, B. et al. Cooperatively enhanced dipole forces from artificial atoms in trapped nanodiamonds. Nature Phys 13, 241–245 (2017). https://doi.org/10.1038/nphys3940

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3940

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing