Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Disk-mediated accretion burst in a high-mass young stellar object

Abstract

Solar-mass stars form via disk-mediated accretion. Recent findings indicate that this process is probably episodic in the form of accretion bursts1, possibly caused by disk fragmentation2,3,4. Although it cannot be ruled out that high-mass young stellar objects arise from the coalescence of their low-mass brethren5, the latest results suggest that they more likely form via disks6,7,8,9. It follows that disk-mediated accretion bursts should occur10,11. Here we report on the discovery of the first disk-mediated accretion burst from a roughly twenty-solar-mass high-mass young stellar object12. Our near-infrared images show the brightening of the central source and its outflow cavities. Near-infrared spectroscopy reveals emission lines typical for accretion bursts in low-mass protostars, but orders of magnitude more luminous. Moreover, the released energy and the inferred mass-accretion rate are also orders of magnitude larger. Our results identify disk-accretion as the common mechanism of star formation across the entire stellar mass spectrum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pre-outburst, outburst and brightness-ratio images of S255IR NIRS 3.
Figure 2: Pre- and outburst K-band spectra of S255IR NIRS 3 (left) and its redshifted outflow cavity (right).
Figure 3: Pre- (cyan and blue) and outburst (orange and red) spectral energy distributions (SEDs) of S255IR NIRS 3.

Similar content being viewed by others

References

  1. Audard, M. et al. Episodic accretion in young stars. in Protostars and Planets VI (eds Beuther, H., Klessen, R., Dullemond, C. P. & Henning, T.) 387–410 (Univ. Arizona Press, 2014).

    Google Scholar 

  2. Kratter, K. M. & Matzner, C. D. Fragmentation of massive protostellar discs. Mon. Not. R. Astron. Soc. 373, 1563–1576 (2006).

    ADS  Google Scholar 

  3. Krumholz, M. R., Klein, R. I. & McKee, C. F. Radiation-hydrodynamic simulations of collapse and fragmentation in massive protostellar cores. Astrophys. J. 656, 959–979 (2007).

    Article  ADS  Google Scholar 

  4. Vorobyov, E. I. & Basu, S. Variable protostellar accretion with episodic bursts. Astrophys. J. 805, A115 (2015).

    Article  ADS  Google Scholar 

  5. Tan, J. C. et al. Massive star formation. in Protostars and Planets VI (eds Beuther, H., Klessen, R., Dullemond, C. P. & Henning, T.) 149–172 (Univ. Arizona Press, 2014).

    Google Scholar 

  6. Kuiper, R., Klahr, H., Beuther, H. & Henning, T. Three-dimensional simulation of massive star formation in the disk accretion scenario. Astrophys. J. 732, 1–11 (2011).

    Article  ADS  Google Scholar 

  7. Klassen, M., Pudritz, R. E., Kuiper, R., Peters, T. & Benerjee, R. Simulating the formation of massive protostars. I. Radiative feedback and accretion disks. Astrophys. J. 823, A28 (2016).

    Article  ADS  Google Scholar 

  8. Kraus, S. et al. A hot compact dust disk around a massive young stellar object. Nature 466, 339–342 (2010).

    Article  ADS  Google Scholar 

  9. Caratti o Garatti, A. et al. Tracing jet emission at the base of a high-mass YSO. First AMBER/VLTI observations of the Brγ emission in IRAS 13481-6124. Astron. Astrophys. 589, L4 (2016).

    Article  ADS  Google Scholar 

  10. Tan, J. C. & McKee, C. F. The formation of the first stars. I. Mass infall rates, accretion disk structure, and protostellar evolution. Astrophys. J. 603, 383–400 (2004).

    Article  ADS  Google Scholar 

  11. Krumholz, M. R., Klein, R. I., McKee, C. F., Offner, S. S. R. & Cunningham, A. J. The formation of massive star systems by accretion. Science 323, 754–757 (2009).

    Article  ADS  Google Scholar 

  12. Stecklum, B. et al. The methanol maser flare of S255IR and an outburst from the high-mass YSO S255IR-NIRS3—more than a coincidence? The Astronomer’s Telegram 8732, 1 (2016).

    ADS  Google Scholar 

  13. Zinchenko, I. et al. The disk-outflow system in the S255IR area of high-mass star formation. Astrophys. J. 810, A10 (2015).

    Article  ADS  Google Scholar 

  14. Wang, Y. et al. Different evolutionary stages in the massive star-forming region S255 complex. Astron. Astrophys. 527, A32 (2011).

    Article  Google Scholar 

  15. Burns, R. A., Handa, T., Nagayama, T., Sunada, K. & Omodaka, T. H2O masers in a jet-driven bowshock: episodic ejection from a massive young stellar object. Mon. Not. R. Astron. Soc. 460, 283–290 (2016).

    ADS  Google Scholar 

  16. Boley, P. A. et al. The VLTI/MIDI survey of massive young stellar objects. Sounding the inner regions around intermediate- and high-mass young stars using mid-infrared interferometry. Astron. Astrophys. 558, A24 (2013).

    Article  Google Scholar 

  17. Fujisawa, K. et al. A flare of methanol maser in S255. The Astronomer’s Telegram 8286, 1 (2015).

    ADS  Google Scholar 

  18. Sobolev, A. M., Cragg, A. M. & Goodfrey, P. D. Pumping of Class II methanol masers. II. The 51 − 60 A+ transition. Astron. Astrophys. 433, 211–220 (1997).

    ADS  Google Scholar 

  19. Lorenzetti, D. et al. Near-infrared spectroscopic monitoring of EXor variables: first results. Astrophys. J. 693, 1056–1073 (2009).

    Article  ADS  Google Scholar 

  20. Kóspál, Á. et al. Near-infrared spectroscopy of EX Lupi in outburst. Astrophys. J. 736, A72 (2011).

    Article  ADS  Google Scholar 

  21. Caratti o Garatti, A. et al. LBT/LUCIFER near-infrared spectroscopy of PV Cephei. An outbursting young stellar object with an asymmetric jet. Astron. Astrophys. 693, A66 (2013).

    Article  Google Scholar 

  22. Reipurth, B. & Aspin, C. Infrared spectroscopy of Herbig-Haro energy sources. Astron. J. 114, 2700–2707 (1997).

    Article  ADS  Google Scholar 

  23. Contreras Peña, C. et al. Infrared spectroscopy of eruptive variable protostars from VVV. Preprint at http://arxiv.org/abs/1602.06269 (2016).

  24. Hosokawa, T. & Omukai, K. Evolution of massive protostars with high accretion rates. Astrophys. J. 691, 823–846 (2009).

    Article  ADS  Google Scholar 

  25. Hosokawa, T., Yorke, H. W. & Omukai, K. Evolution of massive protostars via disk accretion. Astrophys. J. 721, 478–492 (2010).

    Article  ADS  Google Scholar 

  26. Bally, J. & Zinnecker, H. The birth of high-mass stars: accretion and/or mergers? Astron. J. 129, 2281–2293 (2005).

    Article  ADS  Google Scholar 

  27. Krumholz, M. R., McKee, C. F. & Klein, R. I. How protostellar outflows help massive stars form. Astrophys. J. Lett. 618, 757–768 (2005).

    Article  ADS  Google Scholar 

  28. Caratti o Garatti, A. et al. A near-infrared spectroscopic survey of massive jets towards extended green objects. Astron. Astrophys. 573, A82 (2015).

    Article  Google Scholar 

  29. Hosokawa, T. et al. Formation of massive primordial stars: intermittent UV feedback with episodic mass accretion. Astrophys. J. 824, A119 (2016).

    Article  ADS  Google Scholar 

  30. Baumeister, H. et al. PANIC: the new panoramic NIR camera for Calar Alto. SPIE 7014, 70142R (2008).

    Google Scholar 

  31. Greiner, J. et al. GROND—a 7-channel imager. Pub. Astron. Soc. Pac. 120, 405–424 (2008).

    Article  ADS  Google Scholar 

  32. Skrutskie, M. F. et al. The two micron all sky survey (2MASS). Astron. J. 131, 1163–1183 (2006).

    Article  ADS  Google Scholar 

  33. Landsman, W. B. The IDL Astronomy User’s Library. in Astronomical Data Analysis Software and Systems II (eds Hanisch, R. J., Brissenden, R. J. V. & Barnes, J.) 246–248 (A.S.P. Conference Series 52, 1993).

    Google Scholar 

  34. Adams, J. D. et al. FORCAST: a first light facility instrument for SOFIA. SPIE 7735, 77351U (2010).

    Google Scholar 

  35. Klein, R. et al. FIFI LS: the far-infrared integral field spectrometer for SOFIA. SPIE 6269, 62691F (2006).

    Google Scholar 

  36. Klein, R. et al. FIFI-LS: the facility far-infrared spectrometer for SOFIA. SPIE 9147, 8 (2014).

    Google Scholar 

  37. Longmore, S. N., Burton, M. G., Minier, V. & Walsh, A. J. Mid-infrared source multiplicity within hot molecular cores traced by methanol masers. Mon. Not. R. Astron. Soc. 369, 1196–1200 (2006).

    ADS  Google Scholar 

  38. Itoh, Y. et al. Near-infrared observations of S 255-2: The heart of a massive YSO cluster. Pub. Astron. Soc. Japan 369, 495–500 (2001).

    ADS  Google Scholar 

  39. Simpson, J. P. et al. Hubble space telescope NICMOS polarization observations of three edge-on massive young stellar objects. Astrophys. J. 700, 1488–1501 (2009).

    Article  ADS  Google Scholar 

  40. Draine, B. Scattering by interstellar dust grains. I. Optical and ultraviolet. Astrophys. J. 598, 1017–1025 (2003).

    Article  ADS  Google Scholar 

  41. Whitney, B. A., Wood, K., Bjorkman, J. E. & Wolff, M. J. Two-dimensional radiative transfer in protostellar envelopes. I. Effects of geometry on class I sources. Astrophys. J. 591, 1049–1063 (2003).

    Article  ADS  Google Scholar 

  42. Eisenhauer, F. et al. SINFONI—Integral field spectroscopy at 50 milli-arcsecond resolution with the ESO VLT. SPIE 4841, 1548–1561 (2003).

    ADS  Google Scholar 

  43. McGregor, P. J. et al. Gemini near-infrared integral field spectrograph (NIFS). SPIE 4841, 1581–1591 (2003).

    ADS  Google Scholar 

  44. Modigliani, A. et al. The SINFONI pipeline ArXiv Astrophysics e-prints 0701297, 10 (2007).

  45. Lorenzetti, D. et al. Interpreting the simultaneous variability of near-IR continuum and line emission in young stellar objects. Ap&SS 343, 535–539 (2013).

    Article  ADS  Google Scholar 

  46. Deb, N. C. & Hibbert, A. log gf values for astrophysically important transitions Fe II. Astron. Astrophys. 561, A32 (2014).

    Article  ADS  Google Scholar 

  47. Rieke, G. H. & Lebofsky, M. J. The interstellar extinction law from 1 to 13 microns. Astrophys. J. 288, 618–621 (1985).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.C.o.G., R.G.L. and T.P.R. were supported by Science Foundation Ireland, grant 13/ERC/I2907. A.S. was supported by the Deutsche Forschungsgemeinschaft (DFG) Priority Program 1573. We thank the ESO Paranal and Gemini Observatory staff for their support. B.S. thanks Sylvio Klose for helpful discussions concerning the light echo. This research is partly based on observations collected at the VLT (ESO Paranal, Chile) with programme 296.C-5037(A) and at the Gemini Observatory (Program ID GN-2016A-DD-5). Gemini Observatory is operated by the Association of Universities for Research in Astronomy, under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

Author information

Authors and Affiliations

Authors

Contributions

A.C.o.G., B.S. and R.G.L. wrote the initial manuscript and worked on the data reduction and analysis. R.G.L. supported SINFONI observations. A.C.o.G., B.S. and J.E. are the principal investigators of the ESO, Calar Alto, the Gemini, and the SOFIA proposals, respectively. A.S., R.C. and L.M. worked on the maser and radio data. T.P.R., A.S., R.C., L.M., C.M.W., R.D.O. and W.J.d.W. are coauthors of the proposals. J.G. provided GROND data. A.K., C.F. and R.K. supported SOFIA observations. J.M.I. supported PANIC observations. All coauthors commented on the manuscript.

Corresponding author

Correspondence to A. Caratti o Garatti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caratti o Garatti, A., Stecklum, B., Garcia Lopez, R. et al. Disk-mediated accretion burst in a high-mass young stellar object. Nature Phys 13, 276–279 (2017). https://doi.org/10.1038/nphys3942

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3942

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing