Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fermi polaron-polaritons in charge-tunable atomically thin semiconductors

Abstract

The dynamics of a mobile quantum impurity in a degenerate Fermi system is a fundamental problem in many-body physics. The interest in this field has been renewed due to recent ground-breaking experiments with ultracold Fermi gases1,2,3,4,5. Optical creation of an exciton or a polariton in a two-dimensional electron system embedded in a microcavity constitutes a new frontier for this field due to an interplay between cavity coupling favouring ultralow-mass polariton formation6 and exciton–electron interactions leading to polaron or trion formation7,8. Here, we present cavity spectroscopy of gate-tunable monolayer MoSe2 (ref. 9) exhibiting strongly bound trion and polaron resonances, as well as non-perturbative coupling to a single microcavity mode10,11. As the electron density is increased, the oscillator strength determined from the polariton splitting is gradually transferred from the higher-energy repulsive exciton-polaron resonance to the lower-energy attractive exciton-polaron state. Simultaneous observation of polariton formation in both attractive and repulsive branches indicates a new regime of polaron physics where the polariton impurity mass can be much smaller than that of the electrons. Our findings shed new light on optical response of semiconductors in the presence of free carriers by identifying the Fermi polaron nature of excitonic resonances and constitute a first step in investigation of a new class of degenerate Bose–Fermi mixtures12,13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A MoSe2/hBN/graphene heterostructure in a fibre cavity.
Figure 2: Cavity spectroscopy of the interacting exciton–electron system in the weak-coupling regime.
Figure 3: Cavity spectroscopy of the interacting exciton–electron system in the strong-coupling regime.
Figure 4: Competition between repulsive and attractive polaron resonances.

Similar content being viewed by others

References

  1. Massignan, P., Zaccanti, M. & Bruun, G. M. Polarons, dressed molecules and itinerant ferromagnetism in ultracold Fermi gases. Rep. Prog. Phys. 77, 034401 (2014).

    Article  ADS  Google Scholar 

  2. Schirotzek, A., Wu, C.-H., Sommer, A. & Zwierlein, M. W. Observation of Fermi polarons in a tunable Fermi liquid of ultracold atoms. Phys. Rev. Lett. 102, 230402 (2009).

    Article  ADS  Google Scholar 

  3. Schmidt, R., Enss, T., Pietilä, V. & Demler, E. Fermi polarons in two dimensions. Phys. Rev. A 85, 021602 (2012).

    Article  ADS  Google Scholar 

  4. Kohstall, C. et al. Metastability and coherence of repulsive polarons in a strongly interacting Fermi mixture. Nature 485, 615–618 (2012).

    Article  ADS  Google Scholar 

  5. Koschorreck, M. et al. Attractive and repulsive Fermi polarons in two dimensions. Nature 485, 619–622 (2012).

    Article  ADS  Google Scholar 

  6. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    Article  ADS  Google Scholar 

  7. Esser, A., Zimmermann, R. & Runge, E. Theory of trion spectra in semiconductor nanostructures. Phys. Status Solidi B 227, 317–330 (2001).

    Article  ADS  Google Scholar 

  8. Ganchev, B., Drummond, N., Aleiner, I. & Falko, V. Three-particle complexes in two-dimensional semiconductors. Phys. Rev. Lett. 114, 107401 (2015).

    Article  ADS  Google Scholar 

  9. Xu, X., Yao, W., Xiao, D. & Heinz, T. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    Article  Google Scholar 

  10. Liu, X. et al. Strong light-matter coupling in two-dimensional atomic crystals. Nat. Photon. 9, 30–34 (2015).

    Article  ADS  Google Scholar 

  11. Dufferwiel, S. et al. Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities. Nat. Commun. 6, 8579 (2015).

    Article  ADS  Google Scholar 

  12. Laussy, F. P., Kavokin, A. V. & Shelykh, I. A. Exciton-polariton mediated superconductivity. Phys. Rev. Lett. 104, 106402 (2010).

    Article  ADS  Google Scholar 

  13. Cotleţ, O., Zeytinoǧlu, S., Sigrist, M., Demler, E. & Imamoǧlu, A. M. C. Superconductivity and other collective phenomena in a hybrid Bose–Fermi mixture formed by a polariton condensate and an electron system in two dimensions. Phys. Rev. B 93, 054510 (2016).

    Article  ADS  Google Scholar 

  14. Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2 . Phys. Rev. Lett. 113, 076802 (2014).

    Article  ADS  Google Scholar 

  15. Srivastava, A. & Imamoglu, A. Signatures of Bloch-band geometry on excitons: nonhydrogenic spectra in transition-metal dichalcogenides. Phys. Rev. Lett. 115, 166802 (2015).

    Article  ADS  Google Scholar 

  16. Zhou, J., Shan, W.-Y., Yao, W. & Xiao, D. Berry phase modification to the energy spectrum of excitons. Phys. Rev. Lett. 115, 166803 (2015).

    Article  ADS  Google Scholar 

  17. Wang, G. et al. Exciton states in monolayer MoSe2: impact on interband transitions. 2D Mater. 2, 045005 (2015).

    Article  Google Scholar 

  18. Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B 88, 045318 (2013).

    Article  ADS  Google Scholar 

  19. Chernikov, A. et al. Electrical tuning of exciton binding energies in monolayer WS2 . Phys. Rev. Lett. 115, 126802 (2015).

    Article  ADS  Google Scholar 

  20. Rapaport, R., Cohen, E., Ron, A., Linder, E. & Pfeiffer, L. N. Negatively charged polaritons in a semiconductor microcavity. Phys. Rev. B 63, 235310 (2001).

    Article  ADS  Google Scholar 

  21. Smolka, S. et al. Cavity quantum electrodynamics with many-body states of a two-dimensional electron gas. Science 346, 332–335 (2014).

    Article  ADS  Google Scholar 

  22. Jacqmin, T. et al. Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons. Phys. Rev. Lett. 112, 116402 (2014).

    Article  ADS  Google Scholar 

  23. Suris, R. A. Optical Properties of 2D Systems with Interacting Electrons 111–124 (Springer Netherlands, 2003).

    Book  Google Scholar 

  24. Koudinov, A. V. et al. Suris tetrons: possible spectroscopic evidence for four-particle optical excitations of a two-dimensional electron gas. Phys. Rev. Lett. 112, 147402 (2014).

    Article  ADS  Google Scholar 

  25. Duine, R. & MacDonald, A. Itinerant ferromagnetism in an ultracold atom Fermi gas. Phys. Rev. Lett. 95, 230403 (2005).

    Article  ADS  Google Scholar 

  26. Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 4, 1474 (2013).

    Article  ADS  Google Scholar 

  27. Besga, B. et al. Polariton boxes in a tunable fiber cavity. Phys. Rev. Appl. 3, 014008 (2015).

    Article  ADS  Google Scholar 

  28. Combescot, R. & Giraud, S. Normal state of highly polarized Fermi gases: full many-body treatment. Phys. Rev. Lett. 101, 050404 (2008).

    Article  ADS  Google Scholar 

  29. Vlietinck, J., Ryckebusch, J. & Van Houcke, K. Quasiparticle properties of an impurity in a Fermi gas. Phys. Rev. B 87, 115133 (2013).

    Article  ADS  Google Scholar 

  30. Yu, H., Liu, G.-B., Gong, P., Xu, X. & Yao, W. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides. Nat. Commun. 5, 3876 (2014).

    Article  ADS  Google Scholar 

  31. Zomer, P. J., Guimares, M. H. D., Brant, J. C., Tombros, N. & van Wees, B. J. Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Appl. Phys. Lett. 105, 013101 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J. Reichel, A. Kis and R. Schmidt have made invaluable contributions to the experimental and theoretical aspects of this work. The authors also acknowledge many insightful discussions with C. Ciuti, M. Combescot, M. Fleischhauer, L. Glazman, M. Goldstein, F. Grusdt, D. Pimenov and J. von Delft. This work is supported by an ERC Advanced investigator grant (POLTDES), NCCR Quantum Science and Technology (NCCR QSIT), a research instrument of the Swiss National Science Foundation (SNSF), Harvard-MIT CUA, NSF Grant No. DMR-1308435, M. Rössler, the Walter Haefner Foundation and the ETH Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M.S. and A.I. designed and supervised the experiment. M.S. carried out the measurements. P.B. fabricated the sample. T.F. and M.S. designed and assembled the cavity structure. A.S. and M.K. helped with the experiments. O.C., E.D. and A.I. developed the theoretical model. O.C. carried out the calculations. M.S., O.C. and A.I. wrote the manuscript.

Corresponding authors

Correspondence to Meinrad Sidler or Atac Imamoglu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 583 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidler, M., Back, P., Cotlet, O. et al. Fermi polaron-polaritons in charge-tunable atomically thin semiconductors. Nature Phys 13, 255–261 (2017). https://doi.org/10.1038/nphys3949

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3949

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing