Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optical-field-controlled photoemission from plasmonic nanoparticles

Abstract

At high intensities, light–matter interactions are controlled by the electric field of the exciting light. For instance, when an intense laser pulse interacts with an atomic gas, individual cycles of the incident electric field ionize gas atoms and steer the resulting attosecond-duration electrical wavepackets1,2. Such field-controlled light–matter interactions form the basis of attosecond science and have recently expanded from gases to solid-state nanostructures3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18. Here, we extend these field-controlled interactions to metallic nanoparticles supporting localized surface plasmon resonances. We demonstrate strong-field, carrier-envelope-phase-sensitive photoemission from arrays of tailored metallic nanoparticles, and we show the influence of the nanoparticle geometry and the plasmon resonance on the phase-sensitive response. Additionally, from a technological standpoint, we push strong-field light–matter interactions to the chip scale. We integrate our plasmonic nanoparticles and experimental geometry in compact, micro-optoelectronic devices that operate out of vacuum and under ambient conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device layout and basic operation.
Figure 2: Strong-field, CEP-sensitive photoemission currents.
Figure 3: CEP behaviours.

Similar content being viewed by others

References

  1. Corkum, P. B. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  2. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  3. Bormann, R., Gulde, M., Weismann, A., Yalunin, S. V. & Ropers, C. Tip-enhanced strong-field photoemission. Phys. Rev. Lett. 105, 147601 (2010).

    Article  ADS  Google Scholar 

  4. Schenk, M., Krüger, M. & Hommelhoff, P. Strong-field above-threshold photoemission from sharp metal tips. Phys. Rev. Lett. 105, 257601 (2010).

    Article  ADS  Google Scholar 

  5. Krüger, M., Schenk, M. & Hommelhoff, P. Attosecond control of electrons emitted from a nanoscale metal tip. Nature 475, 78–81 (2011).

    Article  Google Scholar 

  6. Yalunin, S. V., Gulde, M. & Ropers, C. Strong-field photoemission from surfaces: theoretical approaches. Phys. Rev. B 84, 195426 (2011).

    Article  ADS  Google Scholar 

  7. Herink, G., Solli, D. R., Gulde, M. & Ropers, C. Field-driven photoemission from nanostructures quenches the quiver motion. Nature 483, 190–193 (2012).

    Article  ADS  Google Scholar 

  8. Krüger, M., Schenk, M., Förster, M. & Hommelhoff, P. Attosecond physics in photoemission from a metal nanotip. J. Phys. B: At. Mol. Opt. Phys. 45, 074006 (2012).

    Article  ADS  Google Scholar 

  9. Schertz, F., Schmelzeisen, M., Kreiter, M., Elmers, H.-J. & Schönhense, G. Field emission of electrons generated by the near field of strongly coupled plasmons. Phys. Rev. Lett. 108, 237602 (2012).

    Article  ADS  Google Scholar 

  10. Keathley, P. D. et al. Strong-field photoemission from silicon field emitter arrays. Ann. Phys. 525, 144–150 (2013).

    Article  Google Scholar 

  11. Park, D. J. et al. Strong field acceleration and steering of ultrafast electron pulses from a sharp metallic nanotip. Phys. Rev. Lett. 109, 244803 (2012).

    Article  ADS  Google Scholar 

  12. Dombi, P. et al. Ultrafast strong-field photoemission from plasmonic nanoparticles. Nano Lett. 13, 674–678 (2013).

    Article  ADS  Google Scholar 

  13. Nagel, P. M. et al. Surface plasmon assisted electron acceleration in photoemission from gold nanopillars. Chem. Phys. 414, 106–111 (2013).

    Article  Google Scholar 

  14. Piglosiewicz, B. et al. Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures. Nat. Photon. 8, 37–42 (2014).

    Article  ADS  Google Scholar 

  15. Swanwick, M. E. et al. Nanostructured ultrafast silicon-tip optical field-emitter arrays. Nano Lett. 14, 5035–5043 (2014).

    Article  ADS  Google Scholar 

  16. Hobbs, R. G. et al. High-density Au nanorod optical field-emitter arrays. Nanotechnology 25, 465304 (2014).

    Article  Google Scholar 

  17. Hobbs, R. G. et al. High-yield, ultrafast, surface plasmon-enhanced, Au nanorod optical field electron emitter arrays. ACS Nano 8, 11474–11482 (2014).

    Article  Google Scholar 

  18. Kusa, F., Echternkamp, K. E., Herink, G., Ropers, C. & Ashihara, S. Optical field emission from resonant gold nanorods driven by femtosecond mid-infrared pulses. AIP Advances 5, 077138 (2015).

    Article  ADS  Google Scholar 

  19. Keldysh, L. V. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307–1314 (1965).

    Google Scholar 

  20. Büttiker, M. & Landauer, R. Traversal time for tunneling. Phys. Rev. Lett. 49, 1739–1742 (1982).

    Article  ADS  Google Scholar 

  21. Martin, Y. C., Hamann, H. F. & Wickramasinghe, H. K. Strength of the electric field in apertureless near-field optical microscopy. J. Appl. Phys. 89, 5774–5778 (2001).

    Article  ADS  Google Scholar 

  22. Arbouet, A., Houdellier, F., Marty, R. & Girard, C. Interaction of an ultrashort optical pulse with a metallic nanotip: a Green dyadic approach. J. Appl. Phys. 112, 053103 (2012).

    Article  ADS  Google Scholar 

  23. Giannini, V., Fernández-Domínguez, A. I., Heck, S. C. & Maier, S. A. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 111, 3888–3912 (2011).

    Article  Google Scholar 

  24. Biagioni, P., Huang, J.-S. & Hecht, B. Nanoantennas for visible and infrared radiation. Rep. Prog. Phys. 75, 024402 (2012).

    Article  ADS  Google Scholar 

  25. Wong, T. K. S. & Ingram, S. G. Observational of Fowler–Nordheim tunnelling at atmospheric pressure using Au/Ti lateral tunnel diodes. J. Phys. D: Appl. Phys. 26, 979–985 (1993).

    Article  ADS  Google Scholar 

  26. Driskill-Smith, A. A. G., Hasko, D. G. & Ahmed, H. Nanoscale field emission structures for ultra-low voltage operation at atmospheric pressure. Appl. Phys. Lett. 71, 3159–3161 (1997).

    Article  ADS  Google Scholar 

  27. Brimley, S., Miller, M. S. & Hagmann, M. J. Field emission in air and space-charge-limited currents from iridium–iridium oxide tips with gaps below 100 nm. J. Appl. Phys. 109, 094510 (2011).

    Article  ADS  Google Scholar 

  28. Han, J.-W., Oh, J. S. & Meyyappan, M. Vacuum nanoelectronics: back to the future?—Gate-insulated nanoscale vacuum channel transistor. Appl. Phys. Lett. 100, 213505 (2012).

    Article  ADS  Google Scholar 

  29. Dogariu, A., Shneider, M. N. & Miles, R. B. Versatile radar measurement of the electron loss rate in air. Appl. Phys. Lett. 103, 224102 (2013).

    Article  ADS  Google Scholar 

  30. Murphy, E. L. & Good, R. H. Jr Thermionic emission, field emission, and the transition region. Phys. Rev. 102, 1464–1473 (1956).

    Article  ADS  Google Scholar 

  31. Plech, A., Kotaidis, V., Lorenc, M. & Boneberg, J. Femtosecond laser near-field ablation from gold nanoparticles. Nat. Phys. 2, 44–47 (2006).

    Article  Google Scholar 

  32. Lamprecht, B., Krenn, J. R., Leitner, A. & Aussenegg, F. R. Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation. Phys. Rev. Lett. 83, 4421–4424 (1999).

    Article  ADS  Google Scholar 

  33. Xu, L. et al. Route to phase control of ultrashort light pulses. Opt. Lett. 21, 2008–2010 (1996).

    Article  ADS  Google Scholar 

  34. Paasch-Colberg, T. et al. Solid-state light-phase detector. Nat. Photon. 8, 214–218 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank O. D. Mücke for helpful comments and J. Daley for assistance in device fabrication. This work was supported by the United States Air Force Office of Scientific Research (AFOSR) through grant FA9550-12-1-0499, the Center for Free-Electron Laser Science at DESY, and The Hamburg Center for Ultrafast Imaging: Structure, Dynamics and Control of Matter at the Atomic Scale, an excellence cluster of the Deutsche Forschungsgemeinschaft. W.P.P. acknowledges earlier support from an NSF graduate research fellowship; P.D.K. acknowledges support from an NDSEG graduate fellowship; and R.G.H. acknowledges support for the device fabrication work from the Center for Excitonics, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE-SC0001088. We thank A. Chu and J. Wanapun for additional support.

Author information

Authors and Affiliations

Authors

Contributions

W.P.P. and F.X.K. conceived of the experimental concept. W.P.P. and R.G.H. fabricated the devices. W.P.P. constructed the laser source and experimental apparatus and carried out the measurements. W.P.P. developed the model, and W.P.P., R.G.H., P.D.K., K.K.B. and F.X.K. interpreted the results and composed the manuscript.

Corresponding author

Correspondence to William P. Putnam.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2013 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Putnam, W., Hobbs, R., Keathley, P. et al. Optical-field-controlled photoemission from plasmonic nanoparticles. Nature Phys 13, 335–339 (2017). https://doi.org/10.1038/nphys3978

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3978

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing