Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sharp tunnelling resonance from the vibrations of an electronic Wigner crystal

Abstract

Photoemission and tunnelling spectroscopies measure the energies at which single electrons can be added to or removed from an electronic system1. Features observed in such spectra have revealed electrons coupling to vibrational modes of ions both in solids2 and in individual molecules3. Here we report the discovery of a sharp resonance in the tunnelling spectrum of a two-dimensional electron system. Its behaviour suggests that it originates from vibrational modes, not involving ionic motion, but instead arising from vibrations of spatial ordering of the electrons themselves. In a two-dimensional electronic system at very low temperatures and high magnetic fields, electrons can either condense into a variety of quantum Hall phases or arrange themselves into a highly ordered ‘Wigner’ crystal lattice4,5,6. Such spatially ordered phases of electrons are often electrically insulating and delicate, and have proven very challenging to probe with conventional methods. Using a pulsed tunnelling method capable of probing electron tunnelling into insulating phases, we observe a sharp peak with dependencies on energy and other parameters that fit to models for vibrations of a Wigner crystal7,8. The remarkable sharpness of the structure presents strong evidence of the existence of a Wigner crystal with long correlation length.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pulsed tunnelling measurement set-up and TDOS of 2D holes.
Figure 2: Dependence on ν of the resonance energy εr at various magnetic fields.
Figure 3: Temperature dependence of the magnetophonon resonance.
Figure 4: Control of the tunnelling resonances of 2D electrons.

Similar content being viewed by others

References

  1. Wolf, E. L. Principles of Electron Tunneling Spectroscopy (Oxford Univ. Press, 2011).

    Book  Google Scholar 

  2. Rowell, J. M., McMillan, W. L. & Feldmann, W. L. Phonon emission and self-energy effects in normal-metal tunneling. Phys. Rev. 180, 658–668 (1969).

    Article  ADS  Google Scholar 

  3. Stipe, B. C., Rezaei, M. A. & Ho, W. Single-molecule vibrational spectroscopy and microscopy. Science 280, 1732–1735 (1998).

    Article  ADS  Google Scholar 

  4. Wigner, E. On the interaction of electrons in metals. Phys. Rev. 46, 1002–1011 (1934).

    Article  ADS  Google Scholar 

  5. Lozovik, Y. E. & Yudson, V. I. Crystallization of a two-dimensional electron gas in a magnetic field. JETP Lett. 22, 274–276 (1975).

    ADS  Google Scholar 

  6. Fertig, H. A. in Perspectives in Quantum Hall Effects (eds Sarma, S. D. & Pinczuk, A.) 71–108 (Wiley, 1996).

    Book  Google Scholar 

  7. Bonsall, L. & Maradudin, A. A. Some static and dynamical properties of a two-dimensional Wigner crystal. Phys. Rev. B 15, 1959–1973 (1977).

    Article  ADS  Google Scholar 

  8. Cǒté, R. & MacDonald, A. H. Phonons as collective modes: the case of a two-dimensional Wigner crystal in a strong magnetic field. Phys. Rev. Lett. 65, 2662–2665 (1990).

    Article  ADS  Google Scholar 

  9. Maki, K. & Zotos, X. Static and dynamic properties of a two-dimensional Wigner crystal in a strong magnetic field. Phys. Rev. B 28, 4349–4356 (1983).

    Article  ADS  Google Scholar 

  10. Chang, C.-C., Jeon, G. S. & Jain, J. K. Microscopic verification of topological electron-vortex binding in the lowest Landau-level crystal state. Phys. Rev. Lett. 94, 016809 (2005).

    Article  ADS  Google Scholar 

  11. Archer, A. C., Park, K. & Jain, J. K. Competing crystal phases in the lowest Landau level. Phys. Rev. Lett. 111, 146804 (2013).

    Article  ADS  Google Scholar 

  12. Andrei, E. Y. et al. Observation of a magnetically induced Wigner solid. Phys. Rev. Lett. 60, 2765–2768 (1988).

    Article  ADS  Google Scholar 

  13. Jiang, H. W. et al. Quantum liquid versus electron solid around ν = 1/5 Landau-level filling. Phys. Rev. Lett. 65, 633–636 (1990).

    Article  ADS  Google Scholar 

  14. Goldman, V. J., Santos, M., Shayegan, M. & Cunningham, J. E. Evidence for two-dimentional quantum Wigner crystal. Phys. Rev. Lett. 65, 2189–2192 (1990).

    Article  ADS  Google Scholar 

  15. Piot, B. A. et al. Wigner crystallization in a quasi-three-dimensional electronic system. Nat. Phys. 4, 936–939 (2008).

    Article  Google Scholar 

  16. Chen, Y. et al. Microwave resonance of the 2D Wigner crystal around integer Landau fillings. Phys. Rev. Lett. 91, 016801 (2003).

    Article  ADS  Google Scholar 

  17. Tiemann, L., Rhone, T. D., Shibata, N. & Muraki, K. NMR profiling of quantum electron solids in high magnetic fields. Nat. Phys. 10, 648–652 (2014).

    Article  Google Scholar 

  18. Zhang, D., Huang, X., Dietsche, W., von Klitzing, K. & Smet, J. H. Signatures for Wigner crystal formation in the chemical potential of a two-dimensional electron system. Phys. Rev. Lett. 113, 076804 (2014).

    Article  ADS  Google Scholar 

  19. Johansson, P. & Kinaret, J. M. Tunneling between two two-dimensional electron systems in a strong magnetic field. Phys. Rev. B 50, 4671–4686 (1994).

    Article  ADS  Google Scholar 

  20. Dial, O. E., Ashoori, R. C., Pfeiffer, L. N. & West, K. W. High-resolution spectroscopy of two-dimensional electron systems. Nature 448, 176–179 (2007).

    Article  ADS  Google Scholar 

  21. Dial, O. E., Ashoori, R. C., Pfeiffer, L. N. & West, K. W. Anomalous structure in the single particle spectrum of the fractional quantum Hall effect. Nature 464, 566–570 (2010).

    Article  ADS  Google Scholar 

  22. Gallais, Y., Yan, J., Pinczuk, A., Pfeiffer, L. N. & West, K. W. Soft spin wave near ν = 1: evidence for a magnetic instability in skyrmion systems. Phys. Rev. Lett. 100, 086806 (2008).

    Article  ADS  Google Scholar 

  23. Gervais, G. et al. Evidence for skyrmion crystallization from NMR relaxation experiments. Phys. Rev. Lett. 94, 196803 (2005).

    Article  ADS  Google Scholar 

  24. Davis, L. C. & Duke, C. B. Analysis of the tunneling measurement of electronic self-energies due to interactions of electrons and holes with optical phonons in semiconductors. Phys. Rev. 184, 764–779 (1969).

    Article  ADS  Google Scholar 

  25. Ashoori, R. C., Lebens, J. A., Bigelow, N. P. & Silsbee, R. H. Equilibrium tunneling from the 2-dimensional electron-gas in GaAs—evidence for a magnetic-field-induced energy-gap. Phys. Rev. Lett. 64, 681–684 (1990).

    Article  ADS  Google Scholar 

  26. Millis, A. J. & Littlewood, P. B. Radio-frequency absorption as a probe of the transition between the Wigner crystal and the fractionally quantized Hall state. Phys. Rev. B 50, 17632–17635 (1994).

    Article  ADS  Google Scholar 

  27. Côté, R. et al. Collective excitations, NMR, and phase transitions in skyrme crystals. Phys. Rev. Lett. 78, 4825–4828 (1997).

    Article  ADS  Google Scholar 

  28. Sondhi, S. L., Karlhede, A., Kivelson, S. A. & Rezayi, E. H. Skyrmions and the crossover from the integer to fractional quantum Hall effect at small Zeeman energies. Phys. Rev. B 47, 16419–16426 (1993).

    Article  ADS  Google Scholar 

  29. Schmeller, A., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Evidence for skyrmions and single spin flips in the integer quantized Hall effect. Phys. Rev. Lett. 75, 4290–4293 (1995).

    Article  ADS  Google Scholar 

  30. Fogler, M. M., Koulakov, A. A. & Shklovskii, B. I. Ground state of a two-dimensional electron liquid in a weak magnetic field. Phys. Rev. B 54, 1853–1871 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work at MIT was funded by the BES Program of the Office of Science of the US DOE, contract no. FG02-08ER46514, and the Gordon and Betty Moore Foundation, through grant GBMF2931. The work at Princeton University was funded by the Gordon and Betty Moore Foundation through the EPiQS initiative Grant GBMF4420, and by the National Science Foundation MRSEC Grant DMR-1420541. We thank P. A. Lee and I. Sodemann for helpful conversations. We thank N. Staley for a careful proofreading of the manuscript and A. Demir for assistance in amplifier design.

Author information

Authors and Affiliations

Authors

Contributions

J.J. and B.M.H. performed measurements. J.J. and R.C.A. analysed data. K.W.W. and L.N.P. grew GaAs/AlGaAs heterostructures. All authors discussed the results. J.J. and R.C.A. wrote the paper, and R.C.A. supervised the overall project.

Corresponding authors

Correspondence to Joonho Jang or Raymond C. Ashoori.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1534 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, J., Hunt, B., Pfeiffer, L. et al. Sharp tunnelling resonance from the vibrations of an electronic Wigner crystal. Nature Phys 13, 340–344 (2017). https://doi.org/10.1038/nphys3979

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys3979

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing