Abstract
Spin waves (SWs) in magnetic structures could potentially be exploited for high-speed, low-power magnonic devices for signal transmission1,2,3,4 and magnetic logic5,6,7,8,9 applications. The short wavelengths and high frequencies of dipole-exchange-mode SWs in metallic ferromagnets make them particularly suitable for nanoscale devices10,11,12,13,14. However, these same characteristics make generation and detection challenging due to the length-scale mismatch of conventional SW interfaces such as microwave striplines. Here we show numerically and experimentally that colliding domain walls (DWs) release energetic spin wave bursts that can couple to and assist depinning of nearby DWs. Hence, DWs can be used as stationary reservoirs of exchange energy that can be efficiently generated, manipulated, and used to release SWs on demand, which can subsequently be detected again using DWs. This work highlights a route towards integrating DWs and SWs for enhanced functionality in spintronics applications.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).
Gubbiotti, G. et al. Collective spin modes in monodimensional magnonic crystals consisting of dipolarly coupled nanowires. Appl. Phys. Lett. 90, 092503 (2007).
Chumak, A. V., Serga, A. A., Hillebrands, B. & Kostylev, M. P. Scattering of backward spin waves in a one-dimensional magnonic crystal. Appl. Phys. Lett. 93, 022508 (2008).
Kim, S.-K., Lee, K.-S. & Han, D.-S. A gigahertz-range spin-wave filter composed of width-modulated nanostrip magnonic-crystal waveguides. Appl. Phys. Lett. 95, 082507 (2009).
Kostylev, M. P., Serga, A. A., Schneider, T., Leven, B. & Hillebrands, B. Spin-wave logical gates. Appl. Phys. Lett. 87, 153501 (2005).
Khitun, A., Nikonov, D. E., Bao, M., Galatsis, K. & Wang, K. L. Feasibility study of logic circuits with a spin wave bus. Nanotechnology 18, 465202 (2007).
Schneider, T. et al. Realization of spin-wave logic gates. Appl. Phys. Lett. 92, 022505 (2008).
Lee, K.-S. & Kim, S.-K. Conceptual design of spin wave logic gates based on a Mach–Zehnder-type spin wave interferometer for universal logic functions. J. Appl. Phys. 104, 053909 (2008).
Jamali, M., Kwon, J. H., Seo, S.-M., Lee, K.-J. & Yang, H. Spin wave nonreciprocity for logic device applications. Sci. Rep. 3, 3160 (2013).
Hertel, R., Wulfhekel, W. & Kirschner, J. Domain-wall induced phase shifts in spin waves. Phys. Rev. Lett. 93, 257202 (2004).
Choi, S., Lee, K.-S., Guslienko, K. Y. & Kim, S.-K. Strong radiation of spin waves by core reversal of a magnetic vortex and their wave behaviors in magnetic nanowire waveguides. Phys. Rev. Lett. 98, 087205 (2007).
Lee, K.-S., Han, D.-S. & Kim, S.-K. Physical origin and generic control of magnonic band gaps of dipole-exchange spin waves in width-modulated nanostrip waveguides. Phys. Rev. Lett. 102, 127202 (2009).
Kim, S.-K. Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements. J. Phys. Appl. Phys. 43, 264004 (2010).
Ulrichs, H., Demidov, V. E., Demokritov, S. O. & Urazhdin, S. Spin-torque nano-emitters for magnonic applications. Appl. Phys. Lett. 100, 162406 (2012).
Brächer, T. et al. Mode selective parametric excitation of spin waves in a Ni81Fe19 microstripe. Appl. Phys. Lett. 99, 162501 (2011).
McMichael, R. D. & Donahue, M. J. Head to head domain wall structures in thin magnetic strips. IEEE Trans. Magn. 33, 4167–4169 (1997).
Bayer, C., Schultheiss, H., Hillebrands, B. & Stamps, R. L. Phase shift of spin waves traveling through a 180 deg; Bloch-domain wall. IEEE Trans. Magn. 41, 3094–3096 (2005).
Vasiliev, S. V., Kruglyak, V. V., Sokolovskii, M. L. & Kuchko, A. N. Spin wave interferometer employing a local nonuniformity of the effective magnetic field. J. Appl. Phys. 101, 113919 (2007).
Bance, S. et al. Micromagnetic calculation of spin wave propagation for magnetologic devices. J. Appl. Phys. 103, 07E735 (2008).
Han, D.-S. et al. Magnetic domain-wall motion by propagating spin waves. Appl. Phys. Lett. 94, 112502 (2009).
Jamali, M., Yang, H. & Lee, K.-J. Spin wave assisted current induced magnetic domain wall motion. Appl. Phys. Lett. 96, 242501 (2010).
Seo, S.-M., Lee, H.-W., Kohno, H. & Lee, K.-J. Magnetic vortex wall motion driven by spin waves. Appl. Phys. Lett. 98, 012514 (2011).
Wang, X., Guo, G., Nie, Y., Zhang, G. & Li, Z. Domain wall motion induced by the magnonic spin current. Phys. Rev. B 86, 054445 (2012).
Kim, J.-S. et al. Interaction between propagating spin waves and domain walls on a ferromagnetic nanowire. Phys. Rev. B 85, 174428 (2012).
Wang, X. S., Yan, P., Shen, Y. H., Bauer, G. E. W. & Wang, X. R. Domain wall propagation through spin wave emission. Phys. Rev. Lett. 109, 167209 (2012).
Wang, X., Guo, G., Zhang, G., Nie, Y. & Xia, Q. An analytical approach to the interaction of a propagating spin wave and a Bloch wall. Appl. Phys. Lett. 102, 132401 (2013).
Moon, K.-W., Chun, B. S., Kim, W. & Hwang, C. Control of domain wall motion by interference of spin wave. J. Appl. Phys. 114, 123908 (2013).
Tveten, E. G., Qaiumzadeh, A. & Brataas, A. Antiferromagnetic domain wall motion induced by spin waves. Phys. Rev. Lett. 112, 147204 (2014).
Hata, H., Taniguchi, T., Lee, H.-W., Moriyama, T. & Ono, T. Spin-wave-induced domain wall motion in perpendicularly magnetized system. Appl. Phys. Express 7, 033001 (2014).
Ralph, D. C. & Stiles, M. D. Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008).
Wang, W. et al. Magnon-driven domain-wall motion with the Dzyaloshinskii-Moriya interaction. Phys. Rev. Lett. 114, 087203 (2015).
Stein, F.-U., Bocklage, L., Weigand, M. & Meier, G. Time-resolved imaging of nonlinear magnetic domain-wall dynamics in ferromagnetic nanowires. Sci. Rep. 3, 1737 (2013).
Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).
Tkachenko, V. S., Kuchko, A. N., Dvornik, M. & Kruglyak, V. V. Propagation and scattering of spin waves in curved magnonic waveguides. Appl. Phys. Lett. 101, 152402 (2012).
Xing, X., Yu, Y., Li, S. & Huang, X. How do spin waves pass through a bend? Sci. Rep. 3, 2958 (2013).
Xing, X., Yin, W. & Wang, Z. Excitation of antisymmetric modes and modulated propagation of spin waves in bent magnonic waveguides. J. Phys. Appl. Phys. 48, 215004–215010 (2015).
Hayashi, M. et al. Dependence of current and field driven depinning of domain walls on their structure and chirality in permalloy nanowires. Phys. Rev. Lett. 97, 207205 (2006).
Prieto, J. L., Muñoz, M. & Martínez, E. Structural characterization of magnetic nanostripes by fast domain wall injection. Phys. Rev. B 83, 104425 (2011).
Stein, F.-U., Bocklage, L., Matsuyama, T. & Meier, G. Generation and annihilation of domain walls in nanowires by localized fields. Appl. Phys. Lett. 100, 192403 (2012).
Jiang, W. et al. Direct imaging of thermally driven domain wall motion in magnetic insulators. Phys. Rev. Lett. 110, 177202 (2013).
Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).
Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).
Chumak, A. V. et al. Direct detection of magnon spin transport by the inverse spin Hall effect. Appl. Phys. Lett. 100, 082405 (2012).
Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).
Allwood, D. A. et al. Magnetic domain-wall logic. Science 309, 1688–1692 (2005).
Jungfleisch, M. B., Lauer, V., Neb, R., Chumak, A. V. & Hillebrands, B. Improvement of the yttrium iron garnet/platinum interface for spin pumping-based applications. Appl. Phys. Lett. 103, 022411 (2013).
Acknowledgements
This work was supported in part by C-SPIN, one of the six SRC STARnet Centers, sponsored by MARCO and DARPA. Technical support by D. Bono is gratefully acknowledged. Devices were fabricated using facilities in the MIT Nanostructures Laboratory, the Research Laboratory of Electronics and KIST Micro Fabrication Center. S.W. acknowledges support from the KIST institutional programme funded by Korea Institute of Science and Technology. S.W. also acknowledges S. Emori for critical comments on the manuscript and financial support by the POSCO Science Fellowship of POSCO TJ Park Foundation and Kwanjeong Educational Foundation from South Korea.
Author information
Authors and Affiliations
Contributions
G.S.D.B. proposed and directed the study. S.W. and T.D. conducted micromagnetic simulations. S.W. and G.S.D.B. designed the experiments and S.W. carried out the experiments. S.W. and G.S.D.B. wrote the manuscript with input from T.D.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 1051 kb)
Rights and permissions
About this article
Cite this article
Woo, S., Delaney, T. & Beach, G. Magnetic domain wall depinning assisted by spin wave bursts. Nature Phys 13, 448–454 (2017). https://doi.org/10.1038/nphys4022
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys4022
This article is cited by
-
Coherent magnon-induced domain-wall motion in a magnetic insulator channel
Nature Nanotechnology (2023)
-
Micromagnetic insights on in-plane magnetization rotation and propagation of magnetization waves in nanowires
Scientific Reports (2023)
-
Control of spin-wave transmission by a programmable domain wall
Nature Communications (2018)
-
Observation of a topologically protected state in a magnetic domain wall stabilized by a ferromagnetic chemical barrier
Scientific Reports (2018)
-
Spin-wave interference in magnetic vortex stacks
Communications Physics (2018)