Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magnetic domain wall depinning assisted by spin wave bursts

Abstract

Spin waves (SWs) in magnetic structures could potentially be exploited for high-speed, low-power magnonic devices for signal transmission1,2,3,4 and magnetic logic5,6,7,8,9 applications. The short wavelengths and high frequencies of dipole-exchange-mode SWs in metallic ferromagnets make them particularly suitable for nanoscale devices10,11,12,13,14. However, these same characteristics make generation and detection challenging due to the length-scale mismatch of conventional SW interfaces such as microwave striplines. Here we show numerically and experimentally that colliding domain walls (DWs) release energetic spin wave bursts that can couple to and assist depinning of nearby DWs. Hence, DWs can be used as stationary reservoirs of exchange energy that can be efficiently generated, manipulated, and used to release SWs on demand, which can subsequently be detected again using DWs. This work highlights a route towards integrating DWs and SWs for enhanced functionality in spintronics applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Micromagnetic simulations of spin wave emission.
Figure 2: Device and experiment schematic.
Figure 3: Characterizing domain wall depinning, nucleation and annihilation.
Figure 4: Experimental detection of domain wall depinning assisted by spin wave bursts.
Figure 5: Direct electrical detection of spin waves via the inverse spin-Hall effect.

Similar content being viewed by others

References

  1. Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

    Article  ADS  Google Scholar 

  2. Gubbiotti, G. et al. Collective spin modes in monodimensional magnonic crystals consisting of dipolarly coupled nanowires. Appl. Phys. Lett. 90, 092503 (2007).

    Article  ADS  Google Scholar 

  3. Chumak, A. V., Serga, A. A., Hillebrands, B. & Kostylev, M. P. Scattering of backward spin waves in a one-dimensional magnonic crystal. Appl. Phys. Lett. 93, 022508 (2008).

    Article  ADS  Google Scholar 

  4. Kim, S.-K., Lee, K.-S. & Han, D.-S. A gigahertz-range spin-wave filter composed of width-modulated nanostrip magnonic-crystal waveguides. Appl. Phys. Lett. 95, 082507 (2009).

    Article  ADS  Google Scholar 

  5. Kostylev, M. P., Serga, A. A., Schneider, T., Leven, B. & Hillebrands, B. Spin-wave logical gates. Appl. Phys. Lett. 87, 153501 (2005).

    Article  ADS  Google Scholar 

  6. Khitun, A., Nikonov, D. E., Bao, M., Galatsis, K. & Wang, K. L. Feasibility study of logic circuits with a spin wave bus. Nanotechnology 18, 465202 (2007).

    Article  ADS  Google Scholar 

  7. Schneider, T. et al. Realization of spin-wave logic gates. Appl. Phys. Lett. 92, 022505 (2008).

    Article  ADS  Google Scholar 

  8. Lee, K.-S. & Kim, S.-K. Conceptual design of spin wave logic gates based on a Mach–Zehnder-type spin wave interferometer for universal logic functions. J. Appl. Phys. 104, 053909 (2008).

    Article  ADS  Google Scholar 

  9. Jamali, M., Kwon, J. H., Seo, S.-M., Lee, K.-J. & Yang, H. Spin wave nonreciprocity for logic device applications. Sci. Rep. 3, 3160 (2013).

    Article  Google Scholar 

  10. Hertel, R., Wulfhekel, W. & Kirschner, J. Domain-wall induced phase shifts in spin waves. Phys. Rev. Lett. 93, 257202 (2004).

    Article  ADS  Google Scholar 

  11. Choi, S., Lee, K.-S., Guslienko, K. Y. & Kim, S.-K. Strong radiation of spin waves by core reversal of a magnetic vortex and their wave behaviors in magnetic nanowire waveguides. Phys. Rev. Lett. 98, 087205 (2007).

    Article  ADS  Google Scholar 

  12. Lee, K.-S., Han, D.-S. & Kim, S.-K. Physical origin and generic control of magnonic band gaps of dipole-exchange spin waves in width-modulated nanostrip waveguides. Phys. Rev. Lett. 102, 127202 (2009).

    Article  ADS  Google Scholar 

  13. Kim, S.-K. Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements. J. Phys. Appl. Phys. 43, 264004 (2010).

    Article  ADS  Google Scholar 

  14. Ulrichs, H., Demidov, V. E., Demokritov, S. O. & Urazhdin, S. Spin-torque nano-emitters for magnonic applications. Appl. Phys. Lett. 100, 162406 (2012).

    Article  ADS  Google Scholar 

  15. Brächer, T. et al. Mode selective parametric excitation of spin waves in a Ni81Fe19 microstripe. Appl. Phys. Lett. 99, 162501 (2011).

    Article  ADS  Google Scholar 

  16. McMichael, R. D. & Donahue, M. J. Head to head domain wall structures in thin magnetic strips. IEEE Trans. Magn. 33, 4167–4169 (1997).

    Article  ADS  Google Scholar 

  17. Bayer, C., Schultheiss, H., Hillebrands, B. & Stamps, R. L. Phase shift of spin waves traveling through a 180 deg; Bloch-domain wall. IEEE Trans. Magn. 41, 3094–3096 (2005).

    Article  ADS  Google Scholar 

  18. Vasiliev, S. V., Kruglyak, V. V., Sokolovskii, M. L. & Kuchko, A. N. Spin wave interferometer employing a local nonuniformity of the effective magnetic field. J. Appl. Phys. 101, 113919 (2007).

    Article  ADS  Google Scholar 

  19. Bance, S. et al. Micromagnetic calculation of spin wave propagation for magnetologic devices. J. Appl. Phys. 103, 07E735 (2008).

    Article  Google Scholar 

  20. Han, D.-S. et al. Magnetic domain-wall motion by propagating spin waves. Appl. Phys. Lett. 94, 112502 (2009).

    Article  ADS  Google Scholar 

  21. Jamali, M., Yang, H. & Lee, K.-J. Spin wave assisted current induced magnetic domain wall motion. Appl. Phys. Lett. 96, 242501 (2010).

    Article  ADS  Google Scholar 

  22. Seo, S.-M., Lee, H.-W., Kohno, H. & Lee, K.-J. Magnetic vortex wall motion driven by spin waves. Appl. Phys. Lett. 98, 012514 (2011).

    Article  ADS  Google Scholar 

  23. Wang, X., Guo, G., Nie, Y., Zhang, G. & Li, Z. Domain wall motion induced by the magnonic spin current. Phys. Rev. B 86, 054445 (2012).

    Article  ADS  Google Scholar 

  24. Kim, J.-S. et al. Interaction between propagating spin waves and domain walls on a ferromagnetic nanowire. Phys. Rev. B 85, 174428 (2012).

    Article  ADS  Google Scholar 

  25. Wang, X. S., Yan, P., Shen, Y. H., Bauer, G. E. W. & Wang, X. R. Domain wall propagation through spin wave emission. Phys. Rev. Lett. 109, 167209 (2012).

    Article  ADS  Google Scholar 

  26. Wang, X., Guo, G., Zhang, G., Nie, Y. & Xia, Q. An analytical approach to the interaction of a propagating spin wave and a Bloch wall. Appl. Phys. Lett. 102, 132401 (2013).

    Article  ADS  Google Scholar 

  27. Moon, K.-W., Chun, B. S., Kim, W. & Hwang, C. Control of domain wall motion by interference of spin wave. J. Appl. Phys. 114, 123908 (2013).

    Article  ADS  Google Scholar 

  28. Tveten, E. G., Qaiumzadeh, A. & Brataas, A. Antiferromagnetic domain wall motion induced by spin waves. Phys. Rev. Lett. 112, 147204 (2014).

    Article  ADS  Google Scholar 

  29. Hata, H., Taniguchi, T., Lee, H.-W., Moriyama, T. & Ono, T. Spin-wave-induced domain wall motion in perpendicularly magnetized system. Appl. Phys. Express 7, 033001 (2014).

    Article  ADS  Google Scholar 

  30. Ralph, D. C. & Stiles, M. D. Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008).

    Article  ADS  Google Scholar 

  31. Wang, W. et al. Magnon-driven domain-wall motion with the Dzyaloshinskii-Moriya interaction. Phys. Rev. Lett. 114, 087203 (2015).

    Article  ADS  Google Scholar 

  32. Stein, F.-U., Bocklage, L., Weigand, M. & Meier, G. Time-resolved imaging of nonlinear magnetic domain-wall dynamics in ferromagnetic nanowires. Sci. Rep. 3, 1737 (2013).

    Article  Google Scholar 

  33. Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    Article  ADS  Google Scholar 

  34. Tkachenko, V. S., Kuchko, A. N., Dvornik, M. & Kruglyak, V. V. Propagation and scattering of spin waves in curved magnonic waveguides. Appl. Phys. Lett. 101, 152402 (2012).

    Article  ADS  Google Scholar 

  35. Xing, X., Yu, Y., Li, S. & Huang, X. How do spin waves pass through a bend? Sci. Rep. 3, 2958 (2013).

    Article  ADS  Google Scholar 

  36. Xing, X., Yin, W. & Wang, Z. Excitation of antisymmetric modes and modulated propagation of spin waves in bent magnonic waveguides. J. Phys. Appl. Phys. 48, 215004–215010 (2015).

    Article  ADS  Google Scholar 

  37. Hayashi, M. et al. Dependence of current and field driven depinning of domain walls on their structure and chirality in permalloy nanowires. Phys. Rev. Lett. 97, 207205 (2006).

    Article  ADS  Google Scholar 

  38. Prieto, J. L., Muñoz, M. & Martínez, E. Structural characterization of magnetic nanostripes by fast domain wall injection. Phys. Rev. B 83, 104425 (2011).

    Article  ADS  Google Scholar 

  39. Stein, F.-U., Bocklage, L., Matsuyama, T. & Meier, G. Generation and annihilation of domain walls in nanowires by localized fields. Appl. Phys. Lett. 100, 192403 (2012).

    Article  ADS  Google Scholar 

  40. Jiang, W. et al. Direct imaging of thermally driven domain wall motion in magnetic insulators. Phys. Rev. Lett. 110, 177202 (2013).

    Article  ADS  Google Scholar 

  41. Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).

    Article  ADS  Google Scholar 

  42. Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

    Article  ADS  Google Scholar 

  43. Chumak, A. V. et al. Direct detection of magnon spin transport by the inverse spin Hall effect. Appl. Phys. Lett. 100, 082405 (2012).

    Article  ADS  Google Scholar 

  44. Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    Article  Google Scholar 

  45. Allwood, D. A. et al. Magnetic domain-wall logic. Science 309, 1688–1692 (2005).

    Article  ADS  Google Scholar 

  46. Jungfleisch, M. B., Lauer, V., Neb, R., Chumak, A. V. & Hillebrands, B. Improvement of the yttrium iron garnet/platinum interface for spin pumping-based applications. Appl. Phys. Lett. 103, 022411 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by C-SPIN, one of the six SRC STARnet Centers, sponsored by MARCO and DARPA. Technical support by D. Bono is gratefully acknowledged. Devices were fabricated using facilities in the MIT Nanostructures Laboratory, the Research Laboratory of Electronics and KIST Micro Fabrication Center. S.W. acknowledges support from the KIST institutional programme funded by Korea Institute of Science and Technology. S.W. also acknowledges S. Emori for critical comments on the manuscript and financial support by the POSCO Science Fellowship of POSCO TJ Park Foundation and Kwanjeong Educational Foundation from South Korea.

Author information

Authors and Affiliations

Authors

Contributions

G.S.D.B. proposed and directed the study. S.W. and T.D. conducted micromagnetic simulations. S.W. and G.S.D.B. designed the experiments and S.W. carried out the experiments. S.W. and G.S.D.B. wrote the manuscript with input from T.D.

Corresponding author

Correspondence to Geoffrey S. D. Beach.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1051 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, S., Delaney, T. & Beach, G. Magnetic domain wall depinning assisted by spin wave bursts. Nature Phys 13, 448–454 (2017). https://doi.org/10.1038/nphys4022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys4022

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing