Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Waveform measurement of charge- and spin-density wavepackets in a chiral Tomonaga–Luttinger liquid

Abstract

In contrast to a free-electron system, a Tomonaga–Luttinger (TL) liquid in a one-dimensional (1D) electron system hosts charge and spin excitations as independent entities1,2,3,4. When an electron is injected into a TL liquid, it transforms into charge- and spin-density wavepackets that propagate at different group velocities and move away from each other. This process, known as spin–charge separation, is the hallmark of TL physics. While spin–charge separation has been probed in momentum- or frequency-domain measurements in various 1D systems5,6,7,8,9, waveforms of separated excitations, which are a direct manifestation of the TL behaviour, have been long awaited to be measured. Here, we present a waveform measurement for the pseudospin–charge separation process in a chiral TL liquid comprising quantum Hall edge channels9,10,11,12,13. The charge- and pseudospin-density waveforms are captured by utilizing a spin-resolved sampling scope that records the spin-up or -down component of the excitations. This experimental technique provides full information for time evolution of the 1D electron system, including not only propagation of TL eigenmodes but also their decay in a practical device14.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of the experiment.
Figure 2: Experimental set-up.
Figure 3: Representative experimental results.
Figure 4: Tuning transport properties.

Similar content being viewed by others

References

  1. Tomonaga, S. Remarks on Bloch’s method of sound waves applied to many-fermion problems. Prog. Theor. Phys. 5, 544–569 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  2. Luttinger, J. M. An exactly soluble model of a many-fermion system. J. Math. Phys. 4, 1154–1162 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  3. Haldane, F. D. M. ‘Luttinger liquid theory’ of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. J. Phys. C 14, 2585–2609 (1981).

    ADS  Google Scholar 

  4. Giamarchi, T. Quantum Physics in One Dimension (Oxford Univ. Press, 2004).

    MATH  Google Scholar 

  5. Auslaender, O. M. et al. Tunneling spectroscopy of the elementary excitations in a one-dimensional wire. Science 295, 825–828 (2002).

    Article  ADS  Google Scholar 

  6. Jompol, Y. et al. Probing spin-charge separation in a Tomonaga–Luttinger liquid. Science 325, 597–602 (2009).

    Article  ADS  Google Scholar 

  7. Bochrath, M. et al. Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598–601 (1999).

    Article  ADS  Google Scholar 

  8. Lorenz, T. et al. Evidence for spin–charge separation in quasi-one-dimensional organic conductors. Nature 418, 614–617 (2002).

    Article  ADS  Google Scholar 

  9. Bocquillon, E. et al. Separation of neutral and charge modes in one-dimensional chiral edge channels. Nat. Commun. 4, 1839 (2013).

    Article  Google Scholar 

  10. Inoue, H. et al. Charge fractionalization in the integer quantum Hall effect. Phys. Rev. Lett. 112, 166801 (2014).

    Article  ADS  Google Scholar 

  11. Berg, E., Oreg, Y., Kim, E.-A. & von Oppen, F. Fractional charges on an integer quantum Hall edge. Phys. Rev. Lett. 102, 236402 (2009).

    Article  ADS  Google Scholar 

  12. Neder, I. Fractionalization noise in edge channels of integer quantum Hall states. Phys. Rev. Lett. 108, 186404 (2012).

    Article  ADS  Google Scholar 

  13. Freulon, V. et al. Hong–Ou–Mandel experiment for temporal investigation of single-electron fractionalization. Nat. Commun. 6, 6854 (2015).

    Article  Google Scholar 

  14. Barak, G. et al. Interacting electrons in one dimension beyond the Luttinger-liquid limit. Nat. Phys. 6, 489–493 (2010).

    Article  Google Scholar 

  15. Kamata, H., Kumada, N., Hashisaka, M., Muraki, K. & Fujisawa, T. Fractionalized wave packets from an artificial Tomonaga–Luttinger liquid. Nat. Nanotech. 9, 177–181 (2014).

    Article  ADS  Google Scholar 

  16. Kamata, H., Ota, T., Muraki, K. & Fujisawa, T. Voltage-controlled group velocity of edge magnetoplasmon in the quantum Hall regime. Phys. Rev. B 81, 085329 (2010).

    Article  ADS  Google Scholar 

  17. Levkivskyi, I. P. & Sukhorukov, E. V. Energy relaxation at quantum Hall edge. Phys. Rev. B 85, 075309 (2012).

    Article  ADS  Google Scholar 

  18. le Sueur, H. et al. Energy relaxation in the integer quantum Hall regime. Phys. Rev. Lett. 105, 056803 (2010).

    Article  ADS  Google Scholar 

  19. Altimiras, C. et al. Tuning energy relaxation along quantum Hall channels. Phys. Rev. Lett. 105, 226804 (2010).

    Article  ADS  Google Scholar 

  20. Washio, K. et al. Long-lived binary tunneling spectrum in the quantum Hall Tomonaga–Luttinger liquid. Phys. Rev. B 93, 075304 (2016).

    Article  ADS  Google Scholar 

  21. Neder, I., Heiblum, M., Levinson, Y., Mahalu, D. & Umansky, V. Unexpected behavior in a two-path electron interferometer. Phys. Rev. Lett. 96, 016804 (2006).

    Article  ADS  Google Scholar 

  22. Levkivskyi, I. P. & Sukhorukov, E. V. Dephasing in the electronic Mach–Zehnder interferometer at filling factor v = 2. Phys. Rev. B 78, 045322 (2008).

    Article  ADS  Google Scholar 

  23. Wen, X. G. Gapless boundary excitations in the quantum Hall states and in the chiral spin states. Phys. Rev. B 43, 11025–11036 (1991).

    Article  ADS  Google Scholar 

  24. Hashisaka, M. et al. Distributed-element circuit model of edge magnetoplasmon transport. Phys. Rev. B 88, 235409 (2013).

    Article  ADS  Google Scholar 

  25. Hashisaka, M., Washio, K., Kamata, H., Muraki, K. & Fujisawa, T. Distributed electrochemical capacitance evidenced in high-frequency admittance measurements on a quantum Hall device. Phys. Rev. B 85, 155424 (2012).

    Article  ADS  Google Scholar 

  26. Chklovskii, D. B., Shklovskii, B. I. & Glazman, L. I. Electrostatics of edge channels. Phys. Rev. B 46, 4026–4034 (1992).

    Article  ADS  Google Scholar 

  27. Volkov, V. A. & Mikhailov, S. A. Edge magnetoplasmons: low frequency weakly damped excitations in inhomogeneous two-dimensional electron systems. Sov. Phys. JETP 67, 1639–1653 (1988).

    Google Scholar 

  28. Bid, A. et al. Observation of neutral modes in the fractional quantum Hall regime. Nature 466, 585–590 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank H. Kamata, N. Kumada and Y. Tokura for their beneficial discussions. This work was supported by Grants-in-Aid for Scientific Research (JP26103508, JP15H05854, JP26247051, JP16H06009) and the Nanotechnology Platform Program of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Contributions

M.H. and T.F. designed and supervised this study. N.H. and M.H. performed the experiment and analysed the data. T.A. and K.M. grew the wafer. M.H. wrote the manuscript with help from T.F. and K.M. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to M. Hashisaka or T. Fujisawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 622 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashisaka, M., Hiyama, N., Akiho, T. et al. Waveform measurement of charge- and spin-density wavepackets in a chiral Tomonaga–Luttinger liquid. Nature Phys 13, 559–562 (2017). https://doi.org/10.1038/nphys4062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys4062

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing