Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Para-hydrogen raser delivers sub-millihertz resolution in nuclear magnetic resonance

Abstract

The precision of nuclear magnetic resonance spectroscopy1 (NMR) is limited by the signal-to-noise ratio, the measurement time Tm and the linewidth Δν = 1/(πT2). Overcoming the T2 limit is possible if the nuclear spins of a molecule emit continuous radio waves. Lasers2,3 and masers4,5,6,7,8,9,10,11,12,13 are self-organized systems which emit coherent radiation in the optical and micro-wave regime. Both are based on creating a population inversion of specific energy states. Here we show continuous oscillations of proton spins of organic molecules in the radiofrequency regime (raser5). We achieve this by coupling a population inversion created through signal amplification by reversible exchange (SABRE)14,15,16 to a high-quality-factor resonator. For the case of 15N labelled molecules, we observe multi-mode raser activity, which reports different spin quantum states. The corresponding 1H-15N J-coupled NMR spectra exhibit unprecedented sub-millihertz resolution and can be explained assuming two-spin ordered quantum states. Our findings demonstrate a substantial improvement in the frequency resolution of NMR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The liquid-state molecular raser.
Figure 2: Maser oscillation and SABRE spectrum of 15N labelled acetonitrile.
Figure 3: Maser oscillations of 15N labelled pyridine.
Figure 4: Spectral analysis of 15N pyridine raser signal.

Similar content being viewed by others

References

  1. Ernst, R. R., Bodenhausen, G. & Wokaun, A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Clarendon Press, 1987).

    Google Scholar 

  2. Maiman, T. H. Stimulated optical radiation in ruby. Nature 187, 493–494 (1961).

    Article  ADS  Google Scholar 

  3. Haken, H. Synergetics: An Introduction (Springer, 1983).

    MATH  Google Scholar 

  4. Ramsey, N. F. The atomic hydrogen maser. Metrologia 1, 7–15 (1964).

    Article  ADS  Google Scholar 

  5. Townes, C. H. Nobel Lectures, Physics 1963–1970 58–86 (Elsevier, 1972).

    Google Scholar 

  6. Richards, M. G., Cowan, B. P., Secca, M. F. & Machin, K. The 3He nuclear Zeeman maser. J. Phys. B 21, 665–681 (1988).

    Article  ADS  Google Scholar 

  7. Gilles, H., Monfort, Y. & Hamel, J. 3He maser for Earth magnetic field measurement. Rev. Sci. Instrum. 74, 4515–4520 (2003).

    Article  ADS  Google Scholar 

  8. Chupp, T. E., Hoare, R. J., Walsworth, R. L. & Wu, Bo. Spin-exchange-pumped 3He and 129Xe Zeeman Masers. Phys. Rev. Lett. 72, 2363–2366 (1994).

    Article  ADS  Google Scholar 

  9. Bösiger, P., Brun, E. & Meier, D. Solid-state nuclear spin-flip maser pumped by dynamic nuclear polarization. Phys. Rev. Lett. 38, 602–605 (1977).

    Article  ADS  Google Scholar 

  10. Chen, H. Y., Lee, Y., Bowen, S. & Hilty, C. Spontaneous emission of NMR signals hyperpolarized proton spin systems. J. Magn. Reson. 208, 204–209 (2011).

    Article  ADS  Google Scholar 

  11. Zhuravlev, A. G., Berdinskiǐ, V. L. & Buchachenko, A. L. Generation of high-frequency current by the products of a photochemical reaction. JETP Lett. 28, 140–142 (1978).

    ADS  Google Scholar 

  12. Oxborrow, M., Breeze, J. D. & Alford, N. M. Room-temperature solid-state maser. Nature 488, 353–356 (2012).

    Article  ADS  Google Scholar 

  13. Jin, L. et al. Proposal for a room-temperature diamond maser. Nat. Comun. 6, 8251 (2015).

    Article  Google Scholar 

  14. Adams, R. W. et al. Reversible interactions with para-hydrogen enhance NMR sensitivity by polarization transfer. Science 323, 1708–1711 (2009).

    Article  ADS  Google Scholar 

  15. Green, A. G. et al. The theory and practice of hyperpolarization in magnetic resonance using parahydrogen. Prog. Nucl. Magn. Reson. Spec. 67, 1–48 (2012).

    Article  Google Scholar 

  16. Adams, R. W., Duckett, S. B., Green, R. A., Williamson, D. C. & Green, G. G. R. A theoretical basis for spontaneous polarization transfer in non-hydrogenative parahydrogen-induced polarization. J. Chem. Phys. 131, 194505 (2009).

    Article  ADS  Google Scholar 

  17. Appelt, S. et al. Theory of spin-exchange optical pumping of 3He and 129Xe. Phys. Rev. A 58, 1412–1439 (1998).

    Article  ADS  Google Scholar 

  18. Carver, T. R. & Slichter, C. P. Experimental verification of the Overhauser nuclear polarization effect. Phys. Rev. 102, 975–981 (1956).

    Article  ADS  Google Scholar 

  19. Suefke, M., Liebisch, A., Blümich, B. & Appelt, S. External high-quality-factor resonator tunes up nuclear magnetic resonance. Nat. Phys. 11, 767–771 (2015).

    Article  Google Scholar 

  20. Lichter, L. R. & Roberts, J. 15N nuclear magnetic resonance spectroscopy. XIII. Pyridine 15N. J. Am. Chem. Soc. 93, 5218–5224 (1971).

    Article  Google Scholar 

  21. Allerhand, A., Addleman, R. E. & Osman, D. Ultrahigh resolution NMR. 1. General considerations and preliminary results for carbon-13 NMR. J. Am. Chem. Soc. 107, 5809–5812 (1985).

    Article  Google Scholar 

  22. Appelt, S., Kühn, H., Häsing, F. W. & Blümich, B. Chemical analysis by ultrahigh-resolution nuclear magnetic resonance in the Earth’s magnetic field. Nat. Phys. 2, 105–109 (2006).

    Article  Google Scholar 

  23. McDermott, R. et al. Liquid-state NMR and scalar couplings in microtesla magnetic fields. Science 295, 2247–2249 (2002).

    Article  ADS  Google Scholar 

  24. Theis, T. et al. Parahydrogen-enhanced zero-field nuclear magnetic resonance. Nat. Phys. 7, 571–575 (2011).

    Article  Google Scholar 

  25. Heil, W. et al. Spin clocks: probing fundamental symmetries in nature. Ann. Phys. 525, 539–549 (2013).

    Article  Google Scholar 

  26. Blümich, B., Casanova, F. & Appelt, S. NMR at low magnetic fields. Chem. Phys. Lett. 477, 231–240 (2009).

    Article  ADS  Google Scholar 

  27. Humphrey, M. A. et al. Testing CPT and Lorentz symmetry with hydrogen masers. Phys. Rev. A 68, 063807 (2003).

    Article  ADS  Google Scholar 

  28. Pospelov, M. & Romalis, M. Lorentz invariance on trial. Phys. Today 57, 40–46 (July, 2004).

    Article  Google Scholar 

  29. Cowley, M. J. et al. Iridium N-heterocyclic carbene complexes as efficient catalysts for magnetization transfer from para-hydrogen. J. Am. Chem. Soc. 133, 6134–6137 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

S.A. thanks the late C. H. Townes for inspiring discussions in Berkeley during autumn 2011. The authors gratefully acknowledge excellent technical assistance and financial support from S. van Waasen, R. Eichel and A. Schwaitzer from the Jülich Research Center and P. Schleker from RWTH Aachen University for help with respect to SABRE chemistry. Furthermore, we would like to thank I. Kalf for supplying deuterated pyridine, and greatly acknowledge J. A. Reimer from UC Berkeley for inspiring discussions and corrections.

Author information

Authors and Affiliations

Authors

Contributions

M.S. built the hardware for EHQE-NMR and para-hydrogen technology, performed experiments, and wrote software for data analysis. S.L. prepared optimized SABRE samples and conducted experiments. A.L. performed experiments and analysed experimental results. B.B. provided laboratory and experimental facilities and creative input. S.A. supervised the project, performed experiments, analysed experimental results, developed the theoretical framework and wrote software for simulation of NMR spectra. M.S., S.L., A.L., B.B. and S.A. wrote the paper.

Corresponding author

Correspondence to Martin Suefke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1349 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suefke, M., Lehmkuhl, S., Liebisch, A. et al. Para-hydrogen raser delivers sub-millihertz resolution in nuclear magnetic resonance. Nature Phys 13, 568–572 (2017). https://doi.org/10.1038/nphys4076

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys4076

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing