Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Higgs mode and its decay in a two-dimensional antiferromagnet

Abstract

Condensed-matter analogues of the Higgs boson in particle physics allow insights into its behaviour in different symmetries and dimensionalities1. Evidence for the Higgs mode has been reported in a number of different settings, including ultracold atomic gases2, disordered superconductors3, and dimerized quantum magnets4. However, decay processes of the Higgs mode (which are eminently important in particle physics) have not yet been studied in condensed matter due to the lack of a suitable material system coupled to a direct experimental probe. A quantitative understanding of these processes is particularly important for low-dimensional systems, where the Higgs mode decays rapidly and has remained elusive to most experimental probes. Here, we discover and study the Higgs mode in a two-dimensional antiferromagnet using spin-polarized inelastic neutron scattering. Our spin-wave spectra of Ca2RuO4 directly reveal a well-defined, dispersive Higgs mode, which quickly decays into transverse Goldstone modes at the antiferromagnetic ordering wavevector. Through a complete mapping of the transverse modes in the reciprocal space, we uniquely specify the minimal model Hamiltonian and describe the decay process. We thus establish a novel condensed-matter platform for research on the dynamics of the Higgs mode.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal, magnetic, and electronic structures of Ca2RuO4.
Figure 2: Spin-wave dispersions strongly deviating from the Heisenberg model.
Figure 3: Identification of the magnetic modes with polarized INS and their comparison to model calculation.
Figure 4: Evolution of the Higgs mode towards the QCP.

Similar content being viewed by others

References

  1. Pekker, D. & Varma, C. M. Amplitude/Higgs modes in condensed matter physics. Annu. Rev. Condens. Matter Phys. 6, 269–297 (2014).

    Article  ADS  Google Scholar 

  2. Endres, M. et al. The ‘Higgs’ amplitude mode at the two-dimensional superfluid/Mott insulator transition. Nature 487, 454–458 (2012).

    Article  ADS  Google Scholar 

  3. Sherman, D. et al. The Higgs mode in disordered superconductors close to a quantum phase transition. Nat. Phys. 11, 188–192 (2015).

    Article  Google Scholar 

  4. Rüegg, C. et al. Quantum magnets under pressure: controlling elementary excitations in TlCuCl3 . Phys. Rev. Lett. 100, 205701 (2008).

    Article  ADS  Google Scholar 

  5. Khaliullin, G. Excitonic magnetism in Van Vleck-type d4 Mott insulators. Phys. Rev. Lett. 111, 197201 (2013).

    Article  ADS  Google Scholar 

  6. Meetei, O. N., Cole, W. S., Randeria, M. & Trivedi, N. Novel magnetic state in d4 Mott insulators. Phys. Rev. B 91, 054412 (2015).

    Article  ADS  Google Scholar 

  7. Nakatsuji, S., Ikeda, S. I. & Maeno, Y. Ca2RuO4: new Mott insulators of layered ruthenate. J. Phys. Soc. Jpn 66, 1868–1871 (1997).

    Article  ADS  Google Scholar 

  8. Braden, M., André, G., Nakatsuji, S. & Maeno, Y. Crystal and magnetic structure of Ca2RuO4: magnetoelastic coupling and the metal-insulator transition. Phys. Rev. B 58, 847–861 (1998).

    Article  ADS  Google Scholar 

  9. Friedt, O. et al. Structural and magnetic aspects of the metal-insulator transition in Ca2−xSrxRuO4 . Phys. Rev. B 63, 174432 (2001).

    Article  ADS  Google Scholar 

  10. Anisimov, V. I., Nekrasov, I. A., Kondakov, D. E., Rice, T. M. & Sigrist, M. Orbital-selective Mott-insulator transition in Ca2−xSrxRuO4 . Eur. Phys. J. B 25, 191–201 (2002).

    ADS  Google Scholar 

  11. Fang, Z., Nagaosa, N. & Terakura, K. Orbital-dependent phase control in Ca2−xSrxRuO4 . Phys. Rev. B 69, 045116 (2004).

    Article  ADS  Google Scholar 

  12. Liebsch, A. & Ishida, H. Subband filling and Mott transition in Ca2−xSrxRuO4 . Phys. Rev. Lett. 98, 216403 (2007).

    Article  ADS  Google Scholar 

  13. Gorelov, E. et al. Nature of the Mott transition in Ca2RuO4 . Phys. Rev. Lett. 104, 226401 (2010).

    Article  ADS  Google Scholar 

  14. Mizokawa, T. et al. Spin–orbit coupling in the Mott insulator Ca2RuO4 . Phys. Rev. Lett. 87, 077202 (2001).

    Article  ADS  Google Scholar 

  15. Haverkort, M. W., Elfimov, I. S., Tjeng, L. H., Sawatzky, G. A. & Damascelli, A. Strong spin–orbit coupling effects on the Fermi surface of Sr2RuO4 and Sr2RhO4 . Phys. Rev. Lett. 101, 026406 (2008).

    Article  ADS  Google Scholar 

  16. Fatuzzo, C. G. et al. Spin–orbit-induced orbital excitations in Sr2RuO4 and Ca2RuO4: a resonant inelastic X-ray scattering study. Phys. Rev. B 91, 155104 (2015).

    Article  ADS  Google Scholar 

  17. Taniguchi, H. et al. Anisotropic uniaxial pressure response of the Mott insulator Ca2RuO4 . Phys. Rev. B 88, 205111 (2013).

    Article  ADS  Google Scholar 

  18. Nakamura, F. et al. From Mott insulator to ferromagnetic metal: a pressure study of Ca2RuO4 . Phys. Rev. B 65, 220402(R) (2002).

    Article  ADS  Google Scholar 

  19. Matsumoto, M., Normand, B., Rice, T. M. & Sigrist, M. Field- and pressure-induced magnetic quantum phase transitions in TlCuCl3 . Phys. Rev. B 69, 054423 (2004).

    Article  ADS  Google Scholar 

  20. Sommer, T., Vojta, M. & Becker, K. Magnetic properties and spin waves of bilayer magnets in a uniform field. Eur. Phys. J. B 23, 329–339 (2001).

    Article  ADS  Google Scholar 

  21. Kunkemöller, S. et al. Highly anisotropic magnon dispersion in Ca2RuO4: evidence for strong spin orbit coupling. Phys. Rev. Lett. 115, 247201 (2015).

    Article  ADS  Google Scholar 

  22. Podolsky, D. & Demler, E. Properties and detection of spin nematic order in strongly correlated electron systems. New J. Phys. 7, 59 (2005).

    Article  ADS  Google Scholar 

  23. Giamarchi, T., Rüegg, C. & Tchernyshyov, O. Bose–Einstein condensation in magnetic insulators. Nature 4, 198–204 (2008).

    Google Scholar 

  24. Merchant, P. et al. Quantum and classical criticality in a dimerized quantum antiferromagnet. Nat. Phys. 10, 373–379 (2014).

    Article  Google Scholar 

  25. Podolsky, D., Auerbach, A. & Arovas, D. P. Visibility of the amplitude (Higgs) mode in condensed matter. Phys. Rev. B 84, 174522 (2011).

    Article  ADS  Google Scholar 

  26. Gazit, S., Podolsky, D. & Auerbach, A. Fate of the Higgs mode near quantum criticality. Phys. Rev. Lett. 110, 140401 (2013).

    Article  ADS  Google Scholar 

  27. Kenzelmann, M. et al. Multiparticle states in the S = 1 chain system CsNiCl3 . Phys. Rev. Lett. 87, 017201 (2001).

    Article  ADS  Google Scholar 

  28. Zaliznyak, I. A., Lee, S.-H. & Petrov, S. V. Continuum in the spin-excitation spectrum of a Haldane chain observed by neutron scattering in CsNiCl3 . Phys. Rev. Lett. 87, 017202 (2001).

    Article  ADS  Google Scholar 

  29. Stone, M. B., Zaliznyak, I. A., Hong, T., Broholm, C. L. & Reich, D. H. Quasiparticle breakdown in a quantum spin liquid. Nature 440, 187–190 (2006).

    Article  ADS  Google Scholar 

  30. Masuda, T. et al. Dynamics of composite Haldane spin chains in IPA-CuCL3 . Phys. Rev. Lett. 96, 047210 (2006).

    Article  ADS  Google Scholar 

  31. Nakatsuji, S. & Maeno, Y. Synthesis and single-crystal growth of Ca2−xSrxRuO4 . J. Solid State Chem. 156, 26–31 (2001).

    Article  ADS  Google Scholar 

  32. Ewings, R. A. et al. HORACE: software for the analysis of data from single crystal spectroscopy experiments at time-of-flight neutron instruments. Nucl. Instrum. Methods Phys. Res. A 884, 132–142 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the German Science Foundation (DFG) via the coordinated research programme SFB-TRR80, and from the European Research Council via Advanced Grant 669550 (Com4Com). The experiments at Oak Ridge National Laboratory’s Spallation Neutron Source were sponsored by the Division of Scientific User Facilities, US DOE Office of Basic Energy Sciences. J.C. was supported by GACR (project no. GJ15-14523Y) and by MSMT CR under NPU II project CEITEC 2020 (LQ1601).

Author information

Authors and Affiliations

Authors

Contributions

M.K., G.H.R. and D.P.C. grew the single crystals. A.J., M.K. and J.P. characterized and co-aligned the crystals. A.J., M.K., J.P. and B.J.K. performed INS experiments and analysed the data. D.L.A., J.T.P. and A.I. supported the INS experiments. G.K. developed the theoretical model. J.C. and B.J.K. performed the numerical calculations. B.J.K. wrote the manuscript with contributions from G.K., J.C., B.K., J.P., A.J. and M.K. and discussions with all authors. B.J.K. and B.K. managed the project.

Corresponding authors

Correspondence to B. Keimer or B. J. Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 924 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, A., Krautloher, M., Porras, J. et al. Higgs mode and its decay in a two-dimensional antiferromagnet. Nature Phys 13, 633–637 (2017). https://doi.org/10.1038/nphys4077

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys4077

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing