Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A ferroelectric quantum phase transition inside the superconducting dome of Sr1−xCaxTiO3−δ

Abstract

SrTiO3, a quantum paraelectric1, becomes a metal with a superconducting instability after removal of an extremely small number of oxygen atoms2. It turns into a ferroelectric upon substitution of a tiny fraction of strontium atoms with calcium3. The two orders may be accidental neighbours or intimately connected, as in the picture of quantum critical ferroelectricity4. Here, we show that in Sr1−xCaxTiO3−δ (0.002 < x < 0.009, δ < 0.001) the ferroelectric order coexists with dilute metallicity and its superconducting instability in a finite window of doping. At a critical carrier density, which scales with the Ca content, a quantum phase transition destroys the ferroelectric order. We detect an upturn in the normal-state scattering and a significant modification of the superconducting dome in the vicinity of this quantum phase transition. The enhancement of the superconducting transition temperature with calcium substitution documents the role played by ferroelectric vicinity in the precocious emergence of superconductivity in this system, restricting possible theoretical scenarios for pairing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Emergence of ferroelectricity and metallicity by atomic substitution in SrTiO3.
Figure 2: Coexistence of ferroelectricity with dilute metallicity.
Figure 3: Evolution of resistivity in Sr1−xCaxTiO3−δ with increasing carrier concentration.
Figure 4: Evolution of the superconducting transition temperature.

Similar content being viewed by others

References

  1. Müller, K. A. & Burkhard, H. SrTiO3: an intrinsic quantum paraelectric below 4 K. Phys. Rev. B 19, 3593–3602 (1979).

    Article  ADS  Google Scholar 

  2. Schooley, J. F., Hosler, W. R. & Cohen, M. L. Superconductivity in semiconducting SrTiO3 . Phys. Rev. Lett. 12, 474–477 (1964).

    Article  ADS  Google Scholar 

  3. Bednorz, J. G. & Müller, K. A. Sr1−xCaxTiO3: an XY quantum ferroelectric with transition to randomness. Phys. Rev. Lett. 52, 2289–2292 (1984).

    Article  ADS  Google Scholar 

  4. Rowley, S. E. et al. Ferroelectric quantum criticality. Nat. Phys. 10, 367–372 (2014).

    Article  Google Scholar 

  5. Lin, X., Zhu, Z., Fauqué, B. & Behnia, K. Fermi surface of the most dilute superconductor. Phys. Rev. X 3, 021002 (2013).

    Google Scholar 

  6. Lin, X. et al. Critical doping for the onset of a two-band superconducting ground state in SrTiO3−δ . Phys. Rev. Lett. 112, 207002 (2014).

    Article  ADS  Google Scholar 

  7. Takada, Y. Theory of superconductivity in polar semiconductors and its application to n-type semiconducting SrTiO3 . J. Phys. Soc. Jpn 45, 786–794 (1978).

    Article  ADS  Google Scholar 

  8. Ruhman, J. & Lee, P. A. Superconductivity at very low density: the case of strontium titanate. Phys. Rev. B 94, 224515 (2016).

    Article  ADS  Google Scholar 

  9. Edge, J. M., Kedem, Y., Aschauer, U., Spaldin, N. A. & Balatsky, A. V. Quantum critical origin of the superconducting dome in SrTiO3 . Phys. Rev. Lett. 115, 247002 (2015).

    Article  ADS  Google Scholar 

  10. Gorkov, L. P. Phonon mechanism in the most dilute superconductor: n-type SrTiO3 . Proc. Natl Acad. Sci. USA 113, 4646–4651 (2016).

    Article  Google Scholar 

  11. Itoh, M. et al. Ferroelectricity induced by oxygen isotope exchange in strontium titanate perovskite. Phys. Rev. Lett. 82, 3540–3543 (1999).

    Article  ADS  Google Scholar 

  12. Uwe, H. & Sakudo, T. Stress-induced ferroelectricity and soft phonon modes in SrTiO3 . Phys. Rev. B 13, 271–286 (1976).

    Article  ADS  Google Scholar 

  13. Kleemann, W., Schäfer, F. J., Müller, K. A. & Bednorz, J. G. Domain state properties of the random-field xy-model system Sr1−xCaxTiO3 . Ferroelectrics 80, 297–300 (1988).

    Article  Google Scholar 

  14. Kleemann, W., Albertini, A., Kuss, M. & Lindner, R. Optical detection of symmetry breaking on a nanoscale in SrTiO3:Ca. Ferroelectrics 203, 57–74 (1997).

    Article  Google Scholar 

  15. Hemberger, J. et al. Quantum paraelectric and induced ferroelectric states in SrTiO3 . J. Phys. Condens. Matter 8, 4673–4690 (1996).

    Article  ADS  Google Scholar 

  16. Carpenter, M. A., Howard, C. J., Knight, K. S. & Zhang, Z. Structural relationships and a phase diagram for (Ca, Sr)TiO3 perovskites. J. Phys. Condens. Matter 18, 10725–10749 (2006).

    Article  ADS  Google Scholar 

  17. Wang, Y. G., Kleemann, W., Zhong, W. L. & Zhang, L. Impurity-induced phase transition in quantum paraelectrics. Phys. Rev. B 57, 13343–13346 (1998).

    Article  ADS  Google Scholar 

  18. Spinelli, A., Torija, M. A., Liu, C., Jan, C. & Leighton, C. Electronic transport in doped SrTiO3: conduction mechanisms and potential applications. Phys. Rev. B 81, 155110 (2010).

    Article  ADS  Google Scholar 

  19. Edwards, P. P. & Sienko, M. J. Universality aspects of the metal–nonmetal transition in condensed media. Phys. Rev. B 17, 2575–2581 (1978).

    Article  ADS  Google Scholar 

  20. Behnia, K. On mobility of electrons in a shallow Fermi sea over a rough seafloor. J. Phys. Condens. Matter 27, 375501 (2015).

    Article  Google Scholar 

  21. Allen, S. J. et al. Conduction-band edge and Shubnikov–de Haas effect in low-electron-density SrTiO3 . Phys. Rev. B 88, 045114 (2013).

    Article  ADS  Google Scholar 

  22. Shi, Y. et al. A ferroelectric-like structural transition in a metal. Nat. Mater. 12, 1024–1027 (2013).

    Article  ADS  Google Scholar 

  23. Kolodiazhnyi, T., Tachibana, M., Kawaji, H., Hwang, J. & Takayama-Muromachi, E. Persistence of Ferroelectricity in BaTiO3 through the insulator–metal transition. Phys. Rev. Lett. 104, 147602 (2010).

    Article  ADS  Google Scholar 

  24. Lin, X., Fauqué, B. & Behnia, K. T2 resistivity in in a small single-component Fermi surface. Science 349, 945–948 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  25. van der Marel, D., van Mechelen, J. L. M. & Mazin, I. I. Common Fermi-liquid origin of T2 resistivity and superconductivity in n-type SrTiO3 . Phys. Rev. B 84, 205111 (2011).

    Article  ADS  Google Scholar 

  26. Wang, Y., Liu, X., Burton, J. D., Jaswal, S. S. & Tsymbal, E. Y. Ferroelectric instability under screened Coulomb interactions. Phys. Rev. Lett. 109, 247601 (2012).

    Article  ADS  Google Scholar 

  27. Petersen, L. et al. Direct imaging of the two-dimensional Fermi contour: Fourier-transform STM. Phys. Rev. B 57, R6858–R6861 (1998).

    Article  ADS  Google Scholar 

  28. Matsushita, Y., Bluhm, H., Geballe, T. H. & Fisher, I. R. Evidence for charge Kondo effect in superconducting Tl-doped PbTe. Phys. Rev. Lett. 94, 157002 (2005).

    Article  ADS  Google Scholar 

  29. Lin, X. et al. Multiple nodeless superconducting gaps in optimally doped SrTi1−xNbxO3 . Phys. Rev. B 90, 140508(R) (2014).

    Article  ADS  Google Scholar 

  30. Bauer, E. & Sigrist, M. (eds) Non-Centrosymmetric Superconductors, Introduction and Overview (Springer, 2012).

  31. de Lima, B. S. et al. Interplay between antiferrodistortive, ferroelectric, and superconducting instabilities in Sr1−xCaxTiO3−δ . Phys. Rev. B 91, 045108 (2015).

    Article  ADS  Google Scholar 

  32. Niermann, D. et al. Domain dynamics in the multiferroic phase of MnWO4 . Phys. Rev. B 89, 134412 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by ANR (through the SUPERFIELD and QUANTUM LIMIT projects), by an Ile de France regional grant, by Fonds ESPCI-Paris, by DFG research grant HE-3219/2-1 and by the Institutional Strategy of the University of Cologne within the German Excellence Initiative. X.L. is supported by the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Contributions

K.B. conceived the project. C.W.R. and X.L. prepared oxygen-deficient samples and performed resistivity measurements with B.F.; J.H. designed the electric permittivity set-up and carried out the measurements with X.L., C.P.G., D.F. and S.H.; J.H., C.P.G. and D.F. measured sound velocity. T.L. and J.E. performed thermal expansion measurements. Y.G. performed Raman scattering measurements. K.B., C.W.R., X.L. and J.H. wrote the paper. All authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to Kamran Behnia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 994 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rischau, C., Lin, X., Grams, C. et al. A ferroelectric quantum phase transition inside the superconducting dome of Sr1−xCaxTiO3−δ. Nature Phys 13, 643–648 (2017). https://doi.org/10.1038/nphys4085

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys4085

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing