Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Plasmon-enhanced high-harmonic generation from silicon

Abstract

Plasmonic antennas can enhance the intensity of a nanojoule laser pulse by localizing the electric field in their proximity1. It has been proposed that the field can become strong enough to convert the fundamental laser frequency into high-order harmonics through an extremely nonlinear interaction with gas atoms that occupy the nanoscopic volume surrounding the antennas2,3,4. However, the small number of gas atoms that can occupy this volume limits the generation of high harmonics5,6,7. Here we use an array of monopole nano-antennas to demonstrate plasmon-assisted high-harmonic generation directly from the supporting crystalline silicon substrate. The high density of the substrate compared with a gas allows macroscopic buildup of harmonic emission. Despite the sparse coverage of antennas on the surface, harmonic emission is ten times brighter than without antennas. Imaging the high-harmonic radiation will allow nanometre and attosecond measurement of the plasmonic field8 thereby enabling more sensitive plasmon sensors9 while opening a new path to extreme-ultraviolet-frequency combs10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental setup.
Figure 2: Non-perturbative high-harmonic spectrum.
Figure 3: Imaging high-harmonic emission.

Similar content being viewed by others

References

  1. Stockman, M. I. Nanoplasmonics: the physics behind the applications. Phys. Today 64, 39–44 (February, 2011).

    Article  Google Scholar 

  2. Kim, S. et al. High-harmonic generation by resonant plasmon field enhancement. Nature 453, 757–760 (2008).

    Article  ADS  Google Scholar 

  3. Park, I.-Y. et al. Plasmonic generation of ultrashort extreme-ultraviolet light pulses. Nat. Photon. 5, 677–681 (2011).

    Article  ADS  Google Scholar 

  4. Park, I.-Y. et al. Generation of EUV radiation by plasmonic field enhancement using nano-structured bowties and funnel-waveguides. Ann. Phys. (Leipz.) 525, 87–96 (2013).

    Article  ADS  Google Scholar 

  5. Sivis, M. et al. Nanostructure-enhanced atomic line emission. Nature 485, E1–E3 (2012).

    Article  Google Scholar 

  6. Sivis, M. et al. Extreme-ultraviolet light generation in plasmonic nanostructures. Nat. Phys. 9, 304–309 (2013).

    Article  Google Scholar 

  7. Raschke, M. B. High-harmonic generation with plasmonics: feasible or unphysical? Ann. Phys. (Leipz.) 525, A40–A42 (2013).

    Article  ADS  Google Scholar 

  8. Feist, J., Homer Reid, M. T. & Kling, M. F. Nanoplasmonic near-field synthesis. Phys. Rev. A 87, 033816 (2013).

    Article  ADS  Google Scholar 

  9. Stewart, M. E. et al. Nanostructured plasmonic sensors. Chem. Rev. 108, 494–521 (2008).

    Article  Google Scholar 

  10. Cingöz, A. et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482, 68–71 (2012).

    Article  ADS  Google Scholar 

  11. Li, X. F. et al. Multiple-harmonic generation in rare gases at high laser intensity. Phys. Rev. A 39, 5751–5761 (1989).

    Article  ADS  Google Scholar 

  12. Pfeifer, T., Spielmann, C. & Gerber, G. Femtosecond x-ray science. Rep. Prog. Phys. 69, 443–505 (2006).

    Article  ADS  Google Scholar 

  13. Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7, 138–141 (2011).

    Article  Google Scholar 

  14. Schubert, O. et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nat. Photon. 8, 119–123 (2014).

    Article  ADS  Google Scholar 

  15. Luu, T. T. et al. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 521, 498–502 (2015).

    Article  ADS  Google Scholar 

  16. Vampa, G. et al. Generation of high harmonics from silicon. Preprint at http://arXiv.org/abs/1605.06345 (2016).

  17. Han, S. et al. High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure. Nat. Commun 7, 13105 (2016).

    Article  ADS  Google Scholar 

  18. Boyd, R. W. Nonlinear Optics (Academic, 2003).

    Google Scholar 

  19. Pfullmann, N. et al. Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation. New J. Phys. 15, 093027 (2013).

    Article  ADS  Google Scholar 

  20. Pfullmann, N. et al. Nano-antenna-assisted harmonic generation. Appl. Phys. B 113, 75–79 (2013).

    Article  ADS  Google Scholar 

  21. Guler, U., Shalaev, V. M. & Boltasseva, A. Nanoparticle plasmonics: going practical with transition metal nitrides. Mater. Today 18, 227–237 (April, 2015).

    Article  Google Scholar 

  22. Barwick, B., Flannigan, D. J. & Zewail, A. H. Photon-induced near-field electron microscopy. Nature 462, 902–906 (2009).

    Article  ADS  Google Scholar 

  23. Kawata, S., Inouye, Y. & Verma, P. Plasmonics for near-field nano-imaging and superlensing. Nat. Photon. 3, 388–394 (2009).

    Article  ADS  Google Scholar 

  24. Zhang, B. et al. High contrast 3D imaging of surfaces near the wavelength limit using tabletop EUV ptychography. Ultramicroscopy 158, 98–104 (2015).

    Article  Google Scholar 

  25. Chapman, H. N. et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nat. Phys. 2, 839–843 (2006).

    Article  Google Scholar 

  26. Förg, B. et al. Attosecond nanoscale near-field sampling. Nat. Commun. 7, 11717 (2016).

    Article  ADS  Google Scholar 

  27. Kim, K. T. et al. Petahertz optical oscilloscope. Nat. Photon. 7, 958–962 (2013).

    Article  ADS  Google Scholar 

  28. Dudovich, N. et al. Measuring and controlling the birth of attosecond XUV pulses. Nat. Phys. 2, 781–786 (2006).

    Article  Google Scholar 

  29. Vampa, G. et al. Linking high harmonics from gases and solids. Nature 522, 462–464 (2015).

    Article  ADS  Google Scholar 

  30. Ciappina, M. F. et al. High-order-harmonic generation from inhomogeneous fields. Phys. Rev. A 85, 033828 (2012).

    Article  ADS  Google Scholar 

  31. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    Article  ADS  Google Scholar 

  32. Barbry, M. et al. Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics. Nano Lett. 15, 3410–3419 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank D. Crane and B. Avery for technical support. G.V. thanks M. Sivis for insightful discussions. This material is based on work supported by the Air Force Office of Scientific Research under award number FA9550-16-1-0109 and the AFOSR MURI grant number FA9550-15-1-0037. The authors also acknowledge financial support from the NRC, NSERC and CFI/ORF.

Author information

Authors and Affiliations

Authors

Contributions

G.V. and P.B.C. conceived the experiment; G.V. and T.J.H. performed the high-harmonic measurements; B.G.G. and S.S.M. designed the nano-antennas; B.G.G., A.O. and E.L.-S. fabricated the antennas; A.S. and A.Y.N. maintained the laser source; D.M.V., P.B.C. and P.B. supervised the experiment; all authors contributed to the manuscript.

Corresponding authors

Correspondence to G. Vampa or P. B. Corkum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 615 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vampa, G., Ghamsari, B., Siadat Mousavi, S. et al. Plasmon-enhanced high-harmonic generation from silicon. Nature Phys 13, 659–662 (2017). https://doi.org/10.1038/nphys4087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys4087

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing