Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Edge conduction in monolayer WTe2

Abstract

A two-dimensional topological insulator (2DTI) is guaranteed to have a helical one-dimensional edge mode1,2,3,4,5,6,7,8,9,10,11 in which spin is locked to momentum, producing the quantum spin Hall effect and prohibiting elastic backscattering at zero magnetic field. No monolayer material has yet been shown to be a 2DTI, but recently the Weyl semimetal WTe2 was predicted12 to become a 2DTI in monolayer form if a bulk gap opens. Here, we report that, at temperatures below about 100 K, monolayer WTe2 does become insulating in its interior, while the edges still conduct. The edge conduction is strongly suppressed by an in-plane magnetic field and is independent of gate voltage, save for mesoscopic fluctuations that grow on cooling due to a zero-bias anomaly, which reduces the linear-response conductance. Bilayer WTe2 also becomes insulating at low temperatures but does not show edge conduction. Many of these observations are consistent with monolayer WTe2 being a 2DTI. However, the low-temperature edge conductance, for contacts spacings down to 150 nm, never reaches values higher than 20 μS, about half the predicted value of e2/h, suggesting significant elastic scattering in the edge.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two-terminal characteristics of WTe2 devices.
Figure 2: Distinguishing edge and bulk conduction.
Figure 3: Temperature and magnetic field dependence of the edge conductance.
Figure 4: Statistics, nonlinear properties, and simple picture of edge conduction.

Similar content being viewed by others

References

  1. Kane, C. & Mele, E. A new spin on the insulating state. Science 314, 1692–1693 (2006).

    Article  Google Scholar 

  2. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  Google Scholar 

  3. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    ADS  Google Scholar 

  4. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  ADS  Google Scholar 

  5. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  ADS  Google Scholar 

  6. Roth, A. et al. Nonlocal transport in the quantum spin Hall state. Science 325, 294–297 (2009).

    Article  ADS  Google Scholar 

  7. Gusev, G. M. et al. Transport in disordered two-dimensional topological insulators. Phys. Rev. B 84, 121302(R) (2011).

    Article  ADS  Google Scholar 

  8. König, M. et al. Spatially resolved study of backscattering in the quantum spin Hall state. Phys. Rev. X 3, 021003 (2013).

    Google Scholar 

  9. Knez, I., Du, R.-R. & Sullivan, G. Evidence for helical edge modes in inverted InAs/GaSb quantum wells. Phys. Rev. Lett. 107, 136603 (2011).

    Article  ADS  Google Scholar 

  10. Suzuki, K., Harada, Y., Onomitsu, K. & Muraki, K. Edge channel transport in the InAs/GaSb topological insulating phase. Phys. Rev. B 87, 235311 (2013).

    Article  ADS  Google Scholar 

  11. Li, T. et al. Observation of a helical Luttinger liquid in InAs/GaSb quantum spin Hall edges. Phys. Rev. Lett. 115, 136804 (2015).

    Article  ADS  Google Scholar 

  12. Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    Article  ADS  Google Scholar 

  13. Nowack, K. C. et al. Imaging currents in HgTe quantum wells in the quantum spin Hall regime. Nat. Mater. 12, 787–791 (2013).

    Article  ADS  Google Scholar 

  14. Spanton, E. M. et al. Images of edge current in InAs/GaSb quantum wells. Phys. Rev. Lett. 113, 026804 (2014).

    Article  ADS  Google Scholar 

  15. Xu, C. & Moore, J. E. Stability of the quantum spin Hall effect: effects of interactions, disorder, and Z2 topology. Phys. Rev. B 73, 045322 (2006).

    Article  ADS  Google Scholar 

  16. Maciejko, J. et al. Kondo effect in the helical edge liquid of the quantum spin Hall state. Phys. Rev. Lett. 102, 256803 (2009).

    Article  ADS  Google Scholar 

  17. Tanaka, Y., Furusaki, A. & Matveev, K. A. Conductance of a helical edge liquid coupled to a magnetic impurity. Phys. Rev. Lett. 106, 236402 (2011).

    Article  ADS  Google Scholar 

  18. Altshuler, B. L. et al. Localization at the edge of a 2D topological insulator by Kondo impurities with random anisotropies. Phys. Rev. Lett. 111, 086401 (2013).

    Article  ADS  Google Scholar 

  19. Cheianov, V. & Glazman, L. I. Mesoscopic fluctuations of conductance of a helical edge contaminated by magnetic impurities. Phys. Rev. Lett. 110, 206803 (2013).

    Article  ADS  Google Scholar 

  20. Väyrynen, J. I. et al. Resistance of helical edges formed in a semiconductor heterostructure. Phys. Rev. B 90, 115309 (2014).

    Article  ADS  Google Scholar 

  21. Du, L., Knez, I., Sullivan, G. & Du, R.-R. Robust helical edge transport in gated InAs/GaSb bilayers. Phys. Rev. Lett. 114, 096802 (2015).

    Article  ADS  Google Scholar 

  22. Ma, E. Y. et al. Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry. Nat. Commun. 6, 7252 (2015).

    Article  ADS  Google Scholar 

  23. Vera-Marun, I. J. et al. Quantum Hall transport as a probe of capacitance profile at graphene edges. Appl. Phys. Lett. 102, 013106 (2013).

    Article  ADS  Google Scholar 

  24. Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    Article  ADS  Google Scholar 

  25. Wu, Y. et al. Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe2 . Phys. Rev. B 94, 121113 (2016).

    Article  ADS  Google Scholar 

  26. Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2 . Nature 514, 205–208 (2014).

    Article  ADS  Google Scholar 

  27. Zhao, Y. F. et al. Anisotropic magnetotransport and exotic longitudinal linear magnetoresistance in WTe2 crystals. Phys. Rev. B 92, 206803(R) (2015).

    Google Scholar 

  28. Pletikosic, I., Ali, M. N., Fedorov, A. V., Cava, R. J. & Valla, T. Electronic structure basis for the extraordinary magnetoresistance in WTe2 . Phys. Rev. Lett. 113, 216601 (2014).

    Article  ADS  Google Scholar 

  29. Cai, P. L. et al. Drastic pressure effect on the extremely large magnetoresistance in WTe2: quantum oscillation study. Phys. Rev. Lett. 115, 057202 (2015).

    Article  ADS  Google Scholar 

  30. Lv, H. Y. et al. Perfect charge compensation in WTe2 for the extraordinary magnetoresistance: from bulk to monolayer. Europhys. Lett. 110, 37004 (2015).

    Article  ADS  Google Scholar 

  31. Altshuler, B. L. & Aronov, A. G. Zero bias anomaly in tunnel resistance and electron-electron interaction. Solid State Commun. 30, 115–117 (1979).

    Article  ADS  Google Scholar 

  32. Wu, C. J., Bernevig, B. A. & Zhang, S. C. Helical liquid and the edge of quantum spin Hall systems. Phys. Rev. Lett. 96, 106401 (2006).

    Article  ADS  Google Scholar 

  33. Schmidt, T. L., Rachel, S., von Oppen, F. & Glazman, L. I. Inelastic electron backscattering in a generic helical edge channel. Phys. Rev. Lett. 108, 156402 (2012).

    Article  ADS  Google Scholar 

  34. Väyrynen, J. I., Geissler, F. & Glazman, L. I. Magnetic moments in a helical edge can make weak correlations seem strong. Phys. Rev. B 93, 241301(R) (2016).

    Article  ADS  Google Scholar 

  35. Bahlouli, H., Matveev, K. A., Ephron, D. & Beasley, M. R. Coulomb correlations in hopping through a thin layer. Phys. Rev. B 49, 14496–14503 (1994).

    Article  ADS  Google Scholar 

  36. Ioffe, L. B. & Spivak, B. Z. Giant magnetoresistance in the variable-range hopping regime. J. Exp. Theor. Phys. 117, 551–569 (2013).

    Article  ADS  Google Scholar 

  37. Kane, C. L. & Fisher, M. P. A. Transport in a one-channel Luttinger liquid. Phys. Rev. Lett. 68, 1220–1223 (1992).

    Article  ADS  Google Scholar 

  38. Furusaki, A. & Nagaosa, N. Single-barrier problem and Anderson localization in a one-dimensional interacting electron system. Phys. Rev. B 47, 4631–4643 (1993).

    Article  ADS  Google Scholar 

  39. Kohn, W. Excitonic phases. Phys. Rev. Lett. 19, 439–442 (1967).

    Article  ADS  Google Scholar 

  40. Cercellier, H. et al. Evidence for an excitonic insulator phase in 1T-TiSe2 . Phys. Rev. Lett. 99, 146403 (2007).

    Article  ADS  Google Scholar 

  41. Huang, C. M. et al. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat. Mater. 13, 1096–1101 (2014).

    Article  Google Scholar 

  42. Fu, L. & Kane, C. L. Superconducting proximity effect and majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  ADS  Google Scholar 

  43. Zomer, P. J., Guimaraes, M. H. D., Brant, J. C., Tombros, N. & van Wees, B. J. Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Appl. Phys. Lett. 105, 013101 (2014).

    Article  ADS  Google Scholar 

  44. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotech. 5, 722–726 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Yan (Oak Ridge National Laboratory) for providing the WTe2 crystals, and A. Andreev, L. Glazman, J. Maciejko, K. Matveev, J. Moore, B. Spivak, J. Väyrynen and D. Xiao for discussions. The major part of this work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, Awards DE-SC0002197 (D.H.C.) and DE-SC0012509 (X.X.). T.P. and Z.F. were supported by AFOSR FA9550-14-1-0277. P.N., J.F. and some facilities were supported by NSF EFRI 2DARE 1433496.

Author information

Authors and Affiliations

Authors

Contributions

D.H.C. and X.X. conceived the experiment; Z.F., T.P., S.W. and D.H.C. performed the measurements; Z.F., W.Z., S.W., T.P., X.C., B.S., P.N. and J.F. fabricated the devices; D.H.C., X.X., Z.F. and T.P. analysed the results; and D.H.C., Z.F., T.P. and X.X. wrote the paper with comments from all authors.

Corresponding authors

Correspondence to Xiaodong Xu or David H. Cobden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1975 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, Z., Palomaki, T., Wu, S. et al. Edge conduction in monolayer WTe2. Nature Phys 13, 677–682 (2017). https://doi.org/10.1038/nphys4091

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys4091

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing