Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High-frequency microrheology reveals cytoskeleton dynamics in living cells

Abstract

Living cells are viscoelastic materials, dominated by an elastic response on timescales longer than a millisecond1. On shorter timescales, the dynamics of individual cytoskeleton filaments are expected to emerge, but active microrheology measurements on cells accessing this regime are scarce2. Here, we develop high-frequency microrheology experiments to probe the viscoelastic response of living cells from 1 Hz to 100 kHz. We report the viscoelasticity of different cell types under cytoskeletal drug treatments. On previously inaccessible short timescales, cells exhibit rich viscoelastic responses that depend on the state of the cytoskeleton. Benign and malignant cancer cells revealed remarkably different scaling laws at high frequencies, providing a unique mechanical fingerprint. Microrheology over a wide dynamic range—up to the frequency characterizing the molecular components—provides a mechanistic understanding of cell mechanics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High-frequency microrheology of living fibroblasts.
Figure 2: High-frequency microrheology of fibroblasts with altered actin cytoskeleton.
Figure 3: High-frequency microrheology of benign and malignant cancer cells.

Similar content being viewed by others

References

  1. Fabry, B. et al. Scaling the microrheology of living cells. Phys. Rev. Lett. 87, 148102–148105 (2001).

    Article  ADS  Google Scholar 

  2. Deng, L. H. et al. Fast and slow dynamics of the cytoskeleton. Nat. Mater. 5, 636–640 (2006).

    Article  ADS  Google Scholar 

  3. Petersen, N. O., McConnaughey, W. B. & Elson, E. L. Dependence of locally measured cellular deformability on position on the cell, temperature, and cytochalasin B. Proc. Natl Acad. Sci. USA 79, 5327–5331 (1982).

    Article  ADS  Google Scholar 

  4. Kollmannsberger, P. & Fabry, B. Linear and nonlinear rheology of living cells. Annu. Rev. Mater. Res. 41, 75–97 (2011).

    Article  ADS  Google Scholar 

  5. Bausch, A. & Kroy, K. A bottom-up approach to cell mechanics. Nat. Phys. 2, 231–238 (2006).

    Article  Google Scholar 

  6. Alcaraz, J. et al. Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys. J. 84, 2071–2079 (2003).

    Article  ADS  Google Scholar 

  7. Broedersz, C. P. & MacKintosh, F. C. Modeling semiflexible polymer networks. Rev. Mod. Phys. 86, 995–1036 (2014).

    Article  ADS  Google Scholar 

  8. Gittes, F. et al. Microscopic viscoelasticity: shear moduli of soft materials determined from thermal fluctuations. Phys. Rev. Lett. 79, 3286–3289 (1997).

    Article  ADS  Google Scholar 

  9. Amblard, F. et al. Subdiffusion and anomalous local viscoelasticity in actin networks. Phys. Rev. Lett. 77, 4470–4473 (1996).

    Article  ADS  Google Scholar 

  10. Isambert, H. & Maggs, A. Dynamics and rheology of actin solutions. Macromolecules 29, 1036–1040 (1996).

    Article  ADS  Google Scholar 

  11. Caspi, A., Elbaum, M., Granek, R., Lachish, A. & Zbaida, D. Semiflexible polymer network: a view from inside. Phys. Rev. Lett. 80, 1106–1109 (1998).

    Article  ADS  Google Scholar 

  12. Koenderink, G. H., Atakhorrami, M., MacKintosh, F. C. & Schmidt, C. F. High-frequency stress relaxation in semiflexible polymer solutions and networks. Phys. Rev. Lett. 96, 138307 (2006).

    Article  ADS  Google Scholar 

  13. Semmrich, C. Glass transition and rheological redundancy in F-actin solutions. Proc. Natl Acad. Sci. USA 104, 20199–20203 (2007).

    Article  ADS  Google Scholar 

  14. Everaers, R., Jülicher, F., Ajdari, A. & Maggs, A. C. Dynamic fluctuations of semiflexible filaments. Phys. Rev. Lett. 82, 3717–3720 (1999).

    Article  ADS  Google Scholar 

  15. Mizuno, D., Tardin, C., Schmidt, C. F. & MacKintosh, F. C. Nonequilibrium mechanics of active cytoskeletal networks. Science 315, 370–373 (2007).

    Article  ADS  Google Scholar 

  16. Hoffman, B. D., Massiera, G., Van Citters, K. M. & Crocker, J. C. The consensus mechanics of cultured mammalian cells. Proc. Natl Acad. Sci. USA 103, 10259–10264 (2006).

    Article  ADS  Google Scholar 

  17. Yamada, S., Wirtz, D. & Kuo, S. C. Mechanics of living cells measured by laser tracking microrheology. Biophys. J. 78, 1736–1747 (2000).

    Article  Google Scholar 

  18. Mahaffy, R. E., Shih, C. K., MacKintosh, F. C. & Kas, J. Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Phys. Rev. Lett. 85, 880–883 (2000).

    Article  ADS  Google Scholar 

  19. Cartagena-Rivera, A. X., Wang, W.-H., Geahlen, R.L. & Raman, A. Fast, multi-frequency, and quantitative nanomechanical mapping of live cells using the atomic force microscope. Sci. Rep. 5, 11692 (2015).

    Article  ADS  Google Scholar 

  20. Gavara, N. & Chadwick, R. S. Noncontact microrheology at acoustic frequencies using frequency-modulated atomic force microscopy. Nat. Methods 7, 650–654 (2010).

    Article  Google Scholar 

  21. Ando, T. et al. A high-speed atomic force microscope for studying biological macromolecules. Proc. Natl Acad. Sci. USA 98, 12468–12472 (2001).

    Article  ADS  Google Scholar 

  22. Rico, F., Gonzalez, L., Casuso, I., Puig-Vidal, M. & Scheuring, S. High-speed force spectroscopy unfolds titin at the velocity of molecular dynamics simulations. Science 342, 741–743 (2013).

    Article  ADS  Google Scholar 

  23. Alcaraz, J. et al. Correction of microrheological measurements of soft samples with atomic force microscopy for the hydrodynamic drag on the cantilever. Langmuir 18, 716–721 (2002).

    Article  Google Scholar 

  24. Janovjak, H. J., Struckmeier, J. & Muller, D. J. Hydrodynamic effects in fast AFM single-molecule force measurements. Eur. Biophys. J. Biophys. Lett. 34, 91–96 (2005).

    Article  Google Scholar 

  25. Schnurr, B., Gittes, F., MacKintosh, F. & Schmidt, C. Determining microscopic viscoelasticity in flexible and semiflexible polymer networks from thermal fluctuations. Macromolecules 30, 7781–7792 (1997).

    Article  ADS  Google Scholar 

  26. Colom, A., Casuso, I., Rico, F. & Scheuring, S. A hybrid high-speed atomic force–optical microscope for visualizing single membrane proteins on eukaryotic cells. Nat. Commun. 4, 2155 (2013).

    Article  ADS  Google Scholar 

  27. Gavara, N. & Chadwick, R. S. Determination of the elastic moduli of thin samples and adherent cells using conical atomic force microscope tips. Nat. Nanotech. 7, 733–736 (2012).

    Article  ADS  Google Scholar 

  28. Takahashi, R. & Okajima, T. Mapping power-law rheology of living cells using multi-frequency force modulation atomic force microscopy. Appl. Phys. Lett. 107, 173702 (2015).

    Article  ADS  Google Scholar 

  29. Rigato, A., Rico, F., Eghiaian, F., Piel, M. & Scheuring, S. Atomic force microscopy mechanical mapping of micropatterned cells shows adhesion geometry-dependent mechanical response on local and global scales. ACS Nano 9, 5846–5856 (2015).

    Article  Google Scholar 

  30. Clark, A. G., Dierkes, K. & Paluch, E. K. Monitoring actin cortex thickness in live cells. Biophys. J. 105, 570–580 (2013).

    Article  ADS  Google Scholar 

  31. Zhou, E., Quek, S. & Lim, C. Power-law rheology analysis of cells undergoing micropipette aspiration. Biomech. Model. Mechanobiol. 9, 563–572 (2010).

    Article  Google Scholar 

  32. Fabry, B. et al. Time scale and other invariants of integrative mechanical behavior in living cells. Phys. Rev. E 68, 041914 (2003).

    Article  ADS  Google Scholar 

  33. Obermayer, B. & Frey, E. Tension dynamics and viscoelasticity of extensible wormlike chains. Phys. Rev. E 80, 040801 (2009).

    Article  ADS  Google Scholar 

  34. Eghiaian, F., Rigato, A. & Scheuring, S. Structural, mechanical, and dynamical variability of the actin cortex in living cells. Biophys. J. 108, 1330–1340 (2015).

    Article  ADS  Google Scholar 

  35. Guck, J. et al. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 88, 3689–3698 (2005).

    Article  ADS  Google Scholar 

  36. Guo, M. et al. Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy. Cell 158, 822–832 (2014).

    Article  Google Scholar 

  37. Bertseva, E. Optical trapping microrheology in cultured human cells. Eur. Phys. J. E 35, 1–8 (2012).

    Article  Google Scholar 

  38. Kroy, K. & Glaser, J. The glassy wormlike chain. New J. Phys. 9, 416 (2007).

    Article  ADS  Google Scholar 

  39. Ahmed, W. W. et al. Active mechanics reveal molecular-scale force kinetics in living oocytes. Preprint at http://arXiv.org/abs/151008299 (2015).

  40. Bursac, P. et al. Cytoskeletal remodelling and slow dynamics in the living cell. Nat. Mater. 4, 557–561 (2005).

    Article  ADS  Google Scholar 

  41. Turlier, H. et al. Equilibrium physics breakdown reveals the active nature of red blood cell flickering. Nat. Phys. 12, 513–519 (2016).

    Article  Google Scholar 

  42. Higgins, M. J. et al. Noninvasive determination of optical lever sensitivity in atomic force microscopy. Rev. Sci. Instrum. 77, 013701 (2006).

    Article  ADS  Google Scholar 

  43. Sader, J. E., Chon, J. W. M. & Mulvaney, P. Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70, 3967–3969 (1999).

    Article  ADS  Google Scholar 

  44. Hutter, J. L. Comment on tilt of atomic force microscope cantilevers: effect on spring constant and adhesion measurements. Langmuir 21, 2630–2632 (2005).

    Article  Google Scholar 

  45. Rico, F. et al. Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 72, 021914 (2005).

    Article  Google Scholar 

  46. Press, W. H. Numerical Recipes 3rd Edition: The Art of Scientific Computing (Cambridge Univ. Press, 2007).

    MATH  Google Scholar 

Download references

Acknowledgements

The authors thank A. Sergé, M. Lopez and N. Dusetti for generously providing cell lines and for their technical support, L. Borge from the PCC TPR2-Luminy for technical assistance and F. Eghiaian for helpful discussions. This work was supported by Agence National de la Recherche grants BioHSFS ANR-15-CE11-0007, ANR-11-LABX-0054 (Labex INFORM), ANR-11-IDEX-0001-02 (A MIDEX) and a European Research Council (ERC) Grant #310080 (MEM-STRUCT-AFM).

Author information

Authors and Affiliations

Authors

Contributions

A.R. designed and performed the experiments, analysed the data and wrote the manuscript. F.R. designed the experiments, analysed the data and wrote the manuscript. A.M. modified the high-speed-AFM scanner and helped with calibration and experiments. S.S. contributed to designing the experiments and writing the manuscript.

Corresponding author

Correspondence to Felix Rico.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 583 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rigato, A., Miyagi, A., Scheuring, S. et al. High-frequency microrheology reveals cytoskeleton dynamics in living cells. Nature Phys 13, 771–775 (2017). https://doi.org/10.1038/nphys4104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys4104

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing