Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Experimental realization and characterization of an electronic Lieb lattice

Abstract

Geometry, whether on the atomic or nanoscale, is a key factor for the electronic band structure of materials. Some specific geometries give rise to novel and potentially useful electronic bands. For example, a honeycomb lattice leads to Dirac-type bands where the charge carriers behave as massless particles1. Theoretical predictions are triggering the exploration of novel two-dimensional (2D) geometries2,3,4,5,6,7,8,9,10, such as graphynes and the kagomé and Lieb lattices. The Lieb lattice is the 2D analogue of the 3D lattice exhibited by perovskites2; it is a square-depleted lattice, which is characterized by a band structure featuring Dirac cones intersected by a flat band. Whereas photonic and cold-atom Lieb lattices have been demonstrated11,12,13,14,15,16,17, an electronic equivalent in 2D is difficult to realize in an existing material. Here, we report an electronic Lieb lattice formed by the surface state electrons of Cu(111) confined by an array of carbon monoxide molecules positioned with a scanning tunnelling microscope. Using scanning tunnelling microscopy, spectroscopy and wavefunction mapping, we confirm the predicted characteristic electronic structure of the Lieb lattice. The experimental findings are corroborated by muffin-tin and tight-binding calculations. At higher energies, second-order electronic patterns are observed, which are equivalent to a super-Lieb lattice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Designing an electronic Lieb lattice.
Figure 2: Electronic structure of a Lieb lattice.
Figure 3: Wavefunction mapping.
Figure 4: Higher-order effects.

Similar content being viewed by others

References

  1. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  ADS  Google Scholar 

  2. Weeks, C. & Franz, M. Topological insulators on the Lieb and perovskite lattices. Phys. Rev. B 82, 085310 (2010).

    Article  ADS  Google Scholar 

  3. Guo, H. M. & Franz, M. Topological insulator on the kagome lattice. Phys. Rev. B 80, 113102 (2009).

    Article  ADS  Google Scholar 

  4. Apaja, V., Hyrkäs, M. & Manninen, M. Flat bands, Dirac cones, and atom dynamics in an optical lattice. Phys. Rev. A 82, 041402(R) (2010).

    Article  ADS  Google Scholar 

  5. Goldman, N., Urban, D. F. & Bercioux, D. Topological phases for fermionic cold atoms on the Lieb lattice. Phys. Rev. A 83, 063601 (2011).

    Article  ADS  Google Scholar 

  6. Beugeling, W., Everts, J. C. & Smith, C. M. Topological phase transitions driven by next-nearest-neighbor hopping in two-dimensional lattices. Phys. Rev. B 86, 195129 (2012).

    Article  ADS  Google Scholar 

  7. Tadjine, A., Allan, G. & Delerue, C. From lattice Hamiltonians to tunable electron band structures by lithographic design. Phys. Rev. B 94, 075441 (2016).

    Article  ADS  Google Scholar 

  8. Van Miert, G. & Smith, C. M. Dirac cones beyond the honeycomb lattice: a symmetry-based approach. Phys. Rev. B 93, 035401 (2016).

    Article  ADS  Google Scholar 

  9. Li, S., Qiu, W.-X. & Gao, J.-H. Designing artificial two dimensional electron lattice on metal surface: a Kagome-like lattice as an example. Nanoscale 8, 12747–12754 (2016).

    Article  ADS  Google Scholar 

  10. Di Liberto, M., Hemmerich, A. & Smith, C. M. Topological Varma superfluid in optical lattices. Phys. Rev. Lett. 117, 163001 (2016).

    Article  ADS  Google Scholar 

  11. Shen, R., Shao, L. B., Wang, B. & Xing, D. Y. Single Dirac cone with a flat band touching on line-centered-square optical lattices. Phys. Rev. B 81, 041410(R) (2010).

    Article  ADS  Google Scholar 

  12. Guzmán-Silva, D. et al. Experimental observation of bulk and edge transport in photonic Lieb lattices. New J. Phys. 16, 063061 (2014).

    ADS  Google Scholar 

  13. Mukherjee, S. et al. Observation of a localized flat-band state in a photonic Lieb lattice. Phys. Rev. Lett. 114, 245504 (2015).

    Article  ADS  Google Scholar 

  14. Vicencio, R. A. et al. Observation of localized states in Lieb photonic lattices. Phys. Rev. Lett. 114, 245503 (2015).

    Article  ADS  Google Scholar 

  15. Taie, S. et al. Coherent driving and freezing of bosonic matter wave in an optical Lieb lattice. Science Adv. 1, 1500854 (2015).

    Article  ADS  Google Scholar 

  16. Xia, S. et al. Demonstration of flat-band image transmission in optically induced Lieb photonic lattices. Opt. Lett. 41, 1435–1438 (2016).

    Article  ADS  Google Scholar 

  17. Diebel, F., Leykam, D., Kroesen, S., Denz, C. & Desyatnikov, A. S. Conical diffraction and composite Lieb bosons in photonic lattices. Phys. Rev. Lett. 116, 183902 (2016).

    Article  ADS  Google Scholar 

  18. Lieb, E. H. Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201–1204 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  19. Costa, N. C., Mendes-Santos, T., Paiva, T., Dos Santos, R. R. & Scalettar, R. T. Ferromagnetism beyond Lieb’s theorem. Phys. Rev. B 94, 155107 (2016).

    Article  ADS  Google Scholar 

  20. Zhao, A. & Shen, S.-Q. Quantum anomalous Hall effect in a flat band ferromagnet. Phys. Rev. B 85, 085209 (2012).

    Article  ADS  Google Scholar 

  21. Jaworowski, B., Manolescu, A. & Potasz, P. Fractional Chern insulator phase at the transition between checkerboard and Lieb lattices. Phys. Rev. B 92, 245119 (2015).

    Article  ADS  Google Scholar 

  22. Kopnin, N. B., Heikkilä, T. T. & Volovik, G. E. High-temperature surface superconductivity in topological flat-band systems. Phys. Rev. B 83, 220503(R) (2011).

    Article  ADS  Google Scholar 

  23. Julku, A., Peotta, S., Vanhala, T. I., Kim, D. H. & Törmäi, P. Geometric origin of superfluidity in the Lieb-lattice flat band. Phys. Rev. Lett. 117, 045303 (2016).

    Article  ADS  Google Scholar 

  24. Park, C.-H. & Louie, S. G. Making massless Dirac fermions from a patterned two-dimensional electron gas. Nano Lett. 9, 1793–1797 (2009).

    Article  ADS  Google Scholar 

  25. Gomes, K. K., Mar, W., Ko, W., Guinea, F. & Manoharan, H. C. Designer Dirac fermions and topological phases in molecular graphene. Nature 483, 306–310 (2012).

    Article  ADS  Google Scholar 

  26. Moon, C. R. et al. Quantum phase extraction in isospectral electronic nanostructures. Science 319, 782–787 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  27. Moon, C., Mattos, L. S., Foster, B. K., Zeltzer, G. & Manoharan, H. C. Quantum holographic encoding in a two-dimensional electron gas. Nat. Nanotech. 4, 167–172 (2009).

    Article  ADS  Google Scholar 

  28. Paavilainen, S., Ropo, M., Nieminen, J., Akola, J. & Räsänen, E. Coexisting honeycomb and Kagome characteristics in the electronic band structure of molecular graphene. Nano Lett. 16, 3519–3523 (2016).

    Article  ADS  Google Scholar 

  29. Qiu, W.-X., Li, S., Gao, J.-H., Zhou, Y. & Zhang, F.-C. Designing an artificial Lieb lattice on a metal surface. Phys. Rev. B 94, 241409 (2016).

    Article  ADS  Google Scholar 

  30. Nita, M., Ostahie, B. & Aldea, A. Spectral and transport properties of the two-dimensional Lieb lattice. Phys. Rev. B 87, 125428 (2013).

    Article  ADS  Google Scholar 

  31. Urban, D. F., Bercioux, D. & Wimmer, M. Barrier transmission of Dirac-like pseudospin-one particles. Phys. Rev. B 84, 115136 (2011).

    Article  ADS  Google Scholar 

  32. Meyer, G. et al. Controlled manipulation of atoms and small molecules with a low temperature scanning tunneling microscope. Single Mol. 1, 79–86 (2000).

    Article  ADS  Google Scholar 

  33. Celotta, R. J. et al. Invited article: autonomous assembly of atomically perfect nanostructures using a scanning tunneling microscope. Rev. Sci. Instrum. 85, 121301 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Financial support from the Foundation for Fundamental Research on Matter (FOM, grants 16PR3245 and DDC13), which is part of the Netherlands Organisation for Scientific Research (NWO), as well as the European Research Council (‘FIRSTSTEP’,692691) is gratefully acknowledged. We thank J. van der Lit and N. van der Heijden for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.R.S., T.S.G., P.H.J. and I.S. planned the experiment, including the proposal of the design of the CO lattice. M.R.S. and T.S.G. performed the experiments and analysed the data. P.H.J. carried out the tight-binding calculations and G.C.P.v.M. performed the muffin-tin model calculations. S.J.M.Z. developed a program that partially automates the lattice assembly. All authors contributed to the discussions and the manuscript.

Corresponding author

Correspondence to Ingmar Swart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1930 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slot, M., Gardenier, T., Jacobse, P. et al. Experimental realization and characterization of an electronic Lieb lattice. Nature Phys 13, 672–676 (2017). https://doi.org/10.1038/nphys4105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys4105

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing