Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct optical detection of Weyl fermion chirality in a topological semimetal

Abstract

A Weyl semimetal is a novel topological phase of matter1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, in which Weyl fermions arise as pseudo-magnetic monopoles in its momentum space. The chirality of the Weyl fermions, given by the sign of the monopole charge, is central to the Weyl physics, since it directly serves as the sign of the topological number5,15 and gives rise to exotic properties such as Fermi arcs5,9,12 and the chiral anomaly15,16,17,18,19. Here, we directly detect the chirality of the Weyl fermions by measuring the photocurrent in response to circularly polarized mid-infrared light. The resulting photocurrent is determined by both the chirality of Weyl fermions and that of the photons. Our results pave the way for realizing a wide range of theoretical proposals15,16,20,21,22,23,24,25,26,27,28,29,30 for studying and controlling the Weyl fermions and their associated quantum anomalies by optical and electrical means. More broadly, the two chiralities, analogous to the two valleys in two-dimensional materials31,32, lead to a new degree of freedom in a three-dimensional crystal with potential novel pathways to store and carry information.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chirality-dependent optical transition of Weyl fermions in TaAs.
Figure 2: Observation of chirality-dependent photocurrent in TaAs.
Figure 3: Control of photocurrent by varying the Weyl fermion chirality configuration with respect to the light.
Figure 4: Detection and manipulation of chiral Weyl fermions by optical means.

Similar content being viewed by others

References

  1. Weyl, H. Elektron und gravitation. Z. Phys. 56, 330–352 (1929).

    Article  ADS  Google Scholar 

  2. Volovik, G. E. The Universe in a Helium Droplet (Oxford Univ. Press, 2003).

    MATH  Google Scholar 

  3. McEuen, P. L. et al. Disorder, pseudospins, and backscattering in carbon nanotubes. Phys. Rev. Lett. 83, 5098–5101 (1999).

    Article  ADS  Google Scholar 

  4. Murakami, S. Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase. New J. Phys. 9, 356 (2007).

    Article  ADS  Google Scholar 

  5. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  ADS  Google Scholar 

  6. Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    Article  ADS  Google Scholar 

  7. Huang, S. M. et al. A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015).

    Article  ADS  Google Scholar 

  8. Weng, H. et al. Weyl semimetal phase in non-centrosymmetric transition metal monophosphides. Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  9. Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    Article  ADS  Google Scholar 

  10. Lu, L. et al. Observation of Weyl points in a photonic crystal. Science 349, 622–624 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  11. Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  12. Lv, B. Q. et al. Observation of Weyl nodes in TaAs. Nat. Phys. 11, 724–727 (2015).

    Article  Google Scholar 

  13. Yang, L. X. et al. Weyl semimetal phase in the non-centrosymmetric compount TaAs. Nat. Phys. 11, 728–733 (2015).

    Article  Google Scholar 

  14. Belopolski, I. et al. Criteria for directly detecting topological Fermi arcs in Weyl semimetals. Phys. Rev. Lett. 116, 066802 (2016).

    Article  ADS  Google Scholar 

  15. Jia, S., Xu, S.-Y. & Hasan, M. Z. Weyl semimetals, Fermi arcs and chiral anomalies. Nat. Mater. 15, 1140–1144 (2016).

    Article  ADS  Google Scholar 

  16. Parameswaran, S. A. et al. A. Probing the chiral anomaly with nonlocal transport in three-dimensional topological semimetals. Phys. Rev. X 4, 031035 (2014).

    Google Scholar 

  17. Xiong, J. et al. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350, 413–416 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  18. Zhang, C. et al. Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl semimetal. Nat. Commun. 7, 10735 (2016).

    Article  ADS  Google Scholar 

  19. Huang, X. et al. Observation of the chiral anomaly induced negative magneto-resistance in 3D Weyl semi-metal TaAs. Phys. Rev. X 5, 031023 (2015).

    Google Scholar 

  20. Chan, C.-K., Lindner, N. H., Refael, G. & Lee, P. A. Photocurrents in Weyl semimetals. Phys. Rev. B 95, 041104 (2017).

    Article  ADS  Google Scholar 

  21. Taguchi, K., Imaeda, T., Sato, M. & Tanaka, Y. Photovoltaic chiral magnetic effect in Weyl semimetals. Phys. Rev. B 93, 201202(R) (2016).

    Article  ADS  Google Scholar 

  22. Ishizuka, H., Hayata, T., Ueda, M. & Nagaosa, N. Emergent electromagnetic induction and adiabatic charge pumping in Weyl semimetals. Phys. Rev. Lett. 117, 216601 (2016).

    Article  ADS  Google Scholar 

  23. Morimoto, T., Zhong, S., Orenstein, J. & Moore, J. E. Semiclassical theory of nonlinear magneto-optical responses with applications to topological Dirac/Weyl semimetals. Phys. Rev. B 94, 245121 (2016).

    Article  ADS  Google Scholar 

  24. de Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Preprint at http://arXiv.org/abs/1611.05887 (2016).

  25. Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    Article  ADS  Google Scholar 

  26. Chan, C.-K., Lee, P. A., Burch, K. S., Han, J. H. & Ran, Y. When chiral photons meet chiral fermions: photoinduced anomalous Hall effects in Weyl semimetals. Phys. Rev. Lett. 116, 026805 (2016).

    Article  ADS  Google Scholar 

  27. Chen, Y., Wu, S. & Burkov, A. A. Axion response in Weyl semimetals. Phys. Rev. B 88, 125105 (2013).

    Article  ADS  Google Scholar 

  28. Hosur, P. & Qi, X.-L. Tunable circular dichroism due to the chiral anomaly in Weyl semimetals. Phys. Rev. B 91, 081106(R) (2015).

    Article  ADS  Google Scholar 

  29. Goswami, P., Sharma, G. & Tewari, S. Optical activity as a test for dynamic chiral magnetic effect of Weyl semimetals. Phys. Rev. B 92, 161110(R) (2015).

    Article  ADS  Google Scholar 

  30. Ma, K. & Pesin, D. A. Chiral magnetic effect and natural optical activity in (Weyl) metals. Phys. Rev. B 92, 235205 (2015).

    Article  ADS  Google Scholar 

  31. Xu, X. et al. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    Article  Google Scholar 

  32. Mak, K.-F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10, 216–226 (2016).

    Article  ADS  Google Scholar 

  33. Zheng, H. et al. Atomic scale visualization of quantum interference on a Weyl semimetal surface by scanning tunneling microscopy/spectroscopy. ACS Nano 10, 1378–1385 (2016).

    Article  Google Scholar 

  34. Inoue, H. et al. Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of Weyl semimetals. Science 351, 1184–1187 (2016).

    Article  ADS  Google Scholar 

  35. Batabyal, R. et al. Visualizing ‘Fermi arc’ in the Weyl semimetal TaAs. Sci. Adv. 2, e1600709 (2016).

    Article  ADS  Google Scholar 

  36. Yu, R. et al. Determine the chirality of Weyl fermions from the circular dichroism spectra of time-dependent angle-resolved photoemission. Phys. Rev. B 93, 205133 (2016).

    Article  ADS  Google Scholar 

  37. Xu, B. et al. Optical spectroscopy of the Weyl semimetal TaAs. Phys. Rev. B 93, 121110(R) (2016).

    Article  ADS  Google Scholar 

  38. Wu, L. et al. Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals. Nat. Phys. 13, 350–355 (2017).

    Article  Google Scholar 

  39. McIver, J. W. et al. Control over topological insulator photocurrents with light polarization. Nat. Nanotech. 7, 96–100 (2012).

    Article  ADS  Google Scholar 

  40. Yuan, H. et al. Generation and electric control of spin-valleycoupled circular photogalvanic current in WSe2 . Nat. Nanotech. 9, 851–857 (2014).

    Article  ADS  Google Scholar 

  41. Ivchenko, E. L. & Ganichev, S. in Spin Physics in Semiconductors (ed. Dyakonov, M. I.) (Springer, 2008).

    Google Scholar 

  42. Ganichev, S. D. & Prettl, W. Spin photocurrents in quantum wells. J. Phys. Condens. Matter 15, R935–R983 (2003).

    Article  ADS  Google Scholar 

  43. Diehl, H. et al. Spin photocurrents in (110)-grown quantum well structures. New J. Phys. 9, 349 (2007).

    Article  ADS  Google Scholar 

  44. Gabor, N. M. et al. Hot carrier assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    Article  ADS  Google Scholar 

  45. Herring, P. K. et al. Photoresponse of an electrically tunable ambipolar graphene infrared thermocouple. Nano Lett. 14, 901–907 (2014).

    Article  ADS  Google Scholar 

  46. Murray, J. J. et al. Phase relationships and thermodynamics of refractory metal pnictides: the metal-rich tantalum arsenides. J. Less-Common Met. 46, 311–320 (1976).

    Article  Google Scholar 

  47. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank L. Ye and J. Checkelsky for the help with sample preparation. N.G. and S.-Y.X. acknowledge support from US Department of Energy, BES DMSE, Award number DE-FG02-08ER46521 (initial planning), the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4540 (data analysis), and in part from the MRSEC Program of the National Science Foundation under award number DMR-1419807 (data taking, manuscript writing, and using shared experimental facilities). Work in the P.J.-H. group was partly supported by the Center for Excitonics, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences under Award Number DESC0001088 (fabrication and measurement) and partly through AFOSR grant FA9550-16-1-0382 (data analysis), as well as the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4541 to P.J.-H. P.A.L. acknowledges the support by DOE under grant DE-FG02-03-ER46076 (theoretical analyses). T.P. and Y.L. acknowledge partial funding support from the ONR PECASE project (Award No. 021302-001) and the MIT/Army Institute for Soldier Nanotechnologies (Award No. 023674) (experimental setup). G.C. and H.L. were supported by the National Research Foundation (NRF), Prime Minister’s Office, Singapore, under its NRF fellowship NRF Award No. NRF-NRFF2013-03 (first-principles band structure calculations). C.-L.Z. and S.J. were supported by National Basic Research Program of China (grant Nos. 2013CB921901 and 2014CB239302) (single crystal growth). W.X. was supported by the start-up funding through LSU College of Science (single crystal XRD measurements).

Author information

Authors and Affiliations

Authors

Contributions

N.G., P.J.-H., S.-Y.X. and Q.M. designed the experiment. N.G. and P.J.-H. supervised the project. Q.M. and S.-Y.X. performed the measurements and analysed the data. Y.L. and T.P. assisted with the measurements. C.-L.Z. and S.J. grew the single crystal. G.C. and H.L. provided the first-principles band structures. C.-K.C. and P.A.L. provided theoretical analysis and calculated the photocurrents. W.X. performed the single-crystal XRD measurement. S.-Y.X. and Q.M. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Pablo Jarillo-Herrero or Nuh Gedik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3211 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Xu, SY., Chan, CK. et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nature Phys 13, 842–847 (2017). https://doi.org/10.1038/nphys4146

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys4146

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing