Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Preparation of a quantum state with one molecule at each site of an optical lattice

Abstract

Ultracold gases in optical lattices are of great interest, because these systems bear great potential for applications in quantum simulations and quantum information processing, in particular when using particles with a long-range dipole–dipole interaction, such as polar molecules1,2,3,4,5. Here we show the preparation of a quantum state with exactly one molecule at each site of an optical lattice. The molecules are produced from an atomic Mott insulator6 with a density profile chosen such that the central region of the gas contains two atoms per lattice site. A Feshbach resonance is used to associate the atom pairs to molecules7,8,9,10,11,12,13,14. The remaining atoms can be removed with blast light13,15. The technique does not rely on the molecule–molecule interaction properties and is therefore applicable to many systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the molecular n=1 state.
Figure 2: Atomic Mott insulator and molecular n=1 state.
Figure 3: Lifetime of the molecular n=1 state after removing the atoms.
Figure 4: Excitation spectrum of the atomic Mott insulator.

Similar content being viewed by others

References

  1. DeMille, D. Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002).

    Article  ADS  Google Scholar 

  2. Góral, K., Santos, L. & Lewenstein, M. Quantum phases of dipolar bosons in optical lattices. Phys. Rev. Lett. 88, 170406 (2002).

    Article  ADS  Google Scholar 

  3. Lee, C. & Ostrovskaya, E. A. Quantum computation with diatomic bits in optical lattices. Phys. Rev. A 72, 062321 (2005).

    Article  ADS  Google Scholar 

  4. Micheli, A., Brennen, G. K. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nature Phys. 2, 341–347 (2006).

    Article  ADS  Google Scholar 

  5. Barnett, R., Petrov, D., Lukin, M. & Demler, E. Quantum magnetism with multicomponent dipolar molecules in an optical lattice. Phys. Rev. Lett. 96, 190401 (2006).

    Article  ADS  Google Scholar 

  6. Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    Article  ADS  Google Scholar 

  7. Regal, C. A., Ticknor, C., Bohn, J. L. & Jin, D. S. Creation of ultracold molecules from a Fermi gas of atoms. Nature 424, 47–50 (2003).

    Article  ADS  Google Scholar 

  8. Herbig, J. et al. Preparation of a pure molecular quantum gas. Science 301, 1510–1513 (2003).

    Article  ADS  Google Scholar 

  9. Dürr, S., Volz, T., Marte, A. & Rempe, G. Observation of molecules produced from a Bose-Einstein condensate. Phys. Rev. Lett. 92, 020406 (2004).

    Article  ADS  Google Scholar 

  10. Strecker, K. E., Partridge, G. B. & Hulet, R. G. Conversion of an atomic Fermi gas to a long-lived molecular Bose gas. Phys. Rev. Lett. 91, 080406 (2003).

    Article  ADS  Google Scholar 

  11. Cubizolles, J., Bourdel, T., Kokkelmans, S. J., Shlyapnikov, G. V. & Salomon, C. Production of long-lived ultracold Li2 molecules from a Fermi gas. Phys. Rev. Lett. 91, 240401 (2003).

    Article  ADS  Google Scholar 

  12. Jochim, S. et al. Pure gas of optically trapped molecules created from fermionic atoms. Phys. Rev. Lett. 91, 240402 (2003).

    Article  ADS  Google Scholar 

  13. Xu, K. et al. Formation of quantum-degenerate sodium molecules. Phys. Rev. Lett. 91, 210402 (2003).

    Article  ADS  Google Scholar 

  14. Köhler, T., Góral, K. & Julienne, P. S. Production of cold molecules via magnetically tunable Feshbach resonances. Preprint at <http://arxiv.org/abs/cond-mat/0601420> (2006).

  15. Thalhammer, G. et al. Long-lived Feshbach molecules in a three-dimensional optical lattice. Phys. Rev. Lett. 96, 050402 (2006).

    Article  ADS  Google Scholar 

  16. Sage, J. M., Sainis, S., Bergeman, T. & DeMille, D. Optical production of ultracold polar molecules. Phys. Rev. Lett. 94, 203001 (2005).

    Article  ADS  Google Scholar 

  17. Rom, T. et al. State selective production of molecules in optical lattices. Phys. Rev. Lett. 93, 073002 (2004).

    Article  ADS  Google Scholar 

  18. Stöferle, T., Moritz, H., Günter, K., Köhl, M. & Esslinger, T. Molecules of fermionic atoms in an optical lattice. Phys. Rev. Lett. 96, 030401 (2006).

    Article  ADS  Google Scholar 

  19. Winkler, K. et al. Repulsively bound atom pairs in an optical lattice. Nature 441, 853–856 (2006).

    Article  ADS  Google Scholar 

  20. Ryu, C. et al. Raman-induced oscillation between an atomic and a molecular quantum gas. Preprint at <http://arxiv.org/abs/cond-mat/0508201> (2005).

  21. Jaksch, D., Venturi, V., Cirac, J. I., Williams, C. J. & Zoller, P. Creation of a molecular condensate by dynamically melting a Mott insulator. Phys. Rev. Lett. 89, 040402 (2002).

    Article  ADS  Google Scholar 

  22. Damski, B. et al. Creation of a dipolar superfluid in optical lattices. Phys. Rev. Lett. 90, 110401 (2003).

    Article  ADS  Google Scholar 

  23. Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998).

    Article  ADS  Google Scholar 

  24. Marte, A. et al. Feshbach resonances in rubidium 87: Precision measurement and analysis. Phys. Rev. Lett. 89, 283202 (2002).

    Article  Google Scholar 

  25. Gerbier, F. et al. Phase coherence of an atomic Mott insulator. Phys. Rev. Lett. 95, 050404 (2005).

    Article  ADS  Google Scholar 

  26. Stöferle, T., Moritz, H., Schori, C., Köhl, M. & Esslinger, T. Transition from a strongly interacting 1D superfluid to a Mott insulator. Phys. Rev. Lett. 92, 130403 (2004).

    Article  ADS  Google Scholar 

  27. Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. Atom-Photon Interactions 49–59 (Wiley, New York, 1992).

    Google Scholar 

  28. Volz, T., Dürr, S., Ernst, S., Marte, A. & Rempe, G. Characterization of elastic scattering near a Feshbach resonance in 87Rb. Phys. Rev. A 68, 010702(R) (2003).

    Article  ADS  Google Scholar 

  29. Dürr, S., Volz, T. & Rempe, G. Dissociation of ultracold molecules with Feshbach resonances. Phys. Rev. A 70, 031601(R) (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. I. Cirac, T. Esslinger and W. Zwerger for fruitful discussions.

Author information

Authors and Affiliations

Corresponding authors

Correspondence to S. Dürr or G. Rempe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volz, T., Syassen, N., Bauer, D. et al. Preparation of a quantum state with one molecule at each site of an optical lattice. Nature Phys 2, 692–695 (2006). https://doi.org/10.1038/nphys415

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys415

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing