Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Higgs amplitude mode in a two-dimensional quantum antiferromagnet near the quantum critical point

Abstract

Spontaneous symmetry-breaking quantum phase transitions play an essential role in condensed-matter physics1,2,3. The collective excitations in the broken-symmetry phase near the quantum critical point can be characterized by fluctuations of phase and amplitude of the order parameter. The phase oscillations correspond to the massless Nambu–Goldstone modes whereas the massive amplitude mode, analogous to the Higgs boson in particle physics4,5, is prone to decay into a pair of low-energy Nambu–Goldstone modes in low dimensions2,6,7. Especially, observation of a Higgs amplitude mode in two dimensions is an outstanding experimental challenge. Here, using inelastic neutron scattering and applying the bond-operator theory, we directly and unambiguously identify the Higgs amplitude mode in a two-dimensional S = 1/2 quantum antiferromagnet C9H18N2CuBr4 near a quantum critical point in two dimensions. Owing to an anisotropic energy gap, it kinematically prevents such decay and the Higgs amplitude mode acquires an infinite lifetime.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The two-dimensional spin-1/2 coupled two-leg spin ladder antiferromagnet.
Figure 2: The Zeeman effect.
Figure 3: Feasibility of the polarized neutron study.
Figure 4: Polarized neutron study of the spin dynamics.

Similar content being viewed by others

References

  1. Sondhi, S. L., Girvin, S. M., Carini, J. P. & Shahar, D. Continuous quantum phase transitions. Rev. Mod. Phys. 69, 315–333 (1997).

    Article  ADS  Google Scholar 

  2. Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, 1999).

    MATH  Google Scholar 

  3. Vojta, M. Quantum phase transitions. Rep. Prog. Phys. 66, 2069–2110 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  4. Higgs, P. W. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  5. Guralnik, G. S., Hagen, C. R. & Kibble, T. W. B. Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585–587 (1964).

    Article  ADS  Google Scholar 

  6. Chubukov, A. V., Sachdev, S. & Ye, J. Theory of two-dimensional quantum Heisenberg antiferromagnets with a nearly critical ground state. Phys. Rev. B 49, 11919–11961 (1994).

    Article  ADS  Google Scholar 

  7. Sachdev, S. Universal relaxational dynamics near two-dimensional quantum critical points. Phys. Rev. B 59, 14054–14073 (1999).

    Article  ADS  Google Scholar 

  8. Sooryakumar, R. & Klein, M. V. Raman Scattering by superconducting-gap excitations and their coupling to charge-density waves. Phys. Rev. Lett. 45, 660–662 (1980).

    Article  ADS  Google Scholar 

  9. Littlewood, P. B. & Varma, C. M. Amplitude collective modes in superconductors and their coupling to charge-density waves. Phys. Rev. B 26, 4883–4893 (1982).

    Article  ADS  Google Scholar 

  10. Matsunaga, R. et al. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science 345, 1145–1149 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  11. Tsang, J. C., Smith, J. E. & Shafer, M. W. Raman spectroscopy of soft modes at the charge-density-wave phase transition in 2H-NbSe. Phys. Rev. Lett. 37, 1407–1410 (1976).

    Article  ADS  Google Scholar 

  12. Pouget, J. P., Hennion, B., Escribe-Filippini, C. & Sato, M. Neutron-scattering investigations of the Kohn anomaly and of the phase and amplitude charge-density-wave excitations of the blue bronze K0.3MoO3 . Phys. Rev. B 43, 8421–8430 (1991).

    Article  ADS  Google Scholar 

  13. Endres, M. et al. The ‘Higgs’ amplitude mode at the two-dimensional superfluid/Mott insulator transition. Nature 487, 454–458 (2012).

    Article  ADS  Google Scholar 

  14. Rüegg, Ch. et al. Quantum magnets under pressure: controlling elementary excitations in TlCuCl3 . Phys. Rev. Lett. 100, 205701 (2008).

    Article  ADS  Google Scholar 

  15. Merchant, P. et al. Quantum and classical criticality in a dimerized quantum antiferromagnet. Nat. Phys. 10, 373–379 (2014).

    Article  Google Scholar 

  16. Grenier, B. et al. Longitudinal and transverse Zeeman ladders in the Ising-like chain antiferromagnet BaCo2V2O8 . Phys. Rev. Lett. 114, 017201 (2015).

    Article  ADS  Google Scholar 

  17. Pekker, D. & Varma, C. M. Amplitude/Higgs modes in condensed matter physics. Annu. Rev. Condens. Matter Phys. 6, 269–297 (2015).

    Article  ADS  Google Scholar 

  18. Lohöfer, M. & Wessel, S. Excitation-gap scaling near quantum critical three-dimensional antiferromagnets. Phys. Rev. Lett. 118, 147206 (2017).

    Article  ADS  Google Scholar 

  19. Podolsky, D., Auerbach, A. & Arovas, D. P. Visibility of the amplitude (Higgs) mode in condensed matter. Phys. Rev. B 84, 174522 (2011).

    Article  ADS  Google Scholar 

  20. Pollet, L. & Prokof’ev, N. Higgs mode in a two-dimensional superfluid. Phys. Rev. Lett. 109, 010401 (2012).

    Article  ADS  Google Scholar 

  21. Gazit, S., Podolsky, D. & Auerbach, A. Fate of the Higgs mode near quantum criticality. Phys. Rev. Lett. 110, 140401 (2013).

    Article  ADS  Google Scholar 

  22. Chen, K., Liu, L., Deng, Y., Pollet, L. & Prokof’ev, N. Universal properties of the Higgs resonance in (2+1)-dimensional U(1) critical systems. Phys. Rev. Lett. 110, 170403 (2013).

    Article  ADS  Google Scholar 

  23. Lohöfer, M. et al. Dynamical structure factors and excitation modes of the bilayer Heisenberg model. Phys. Rev. B 92, 245137 (2015).

    Article  ADS  Google Scholar 

  24. Barnes, T., Dagotto, E., Riera, J. & Swanson, E. S. Excitation spectrum of Heisenberg spin ladders. Phys. Rev. B 47, 3196–3203 (1993).

    Article  ADS  Google Scholar 

  25. Dagotto, E. & Rice, T. M. Surprise on the way from one- to two-dimensional quantum magnets: the ladder materials. Science 271, 618–623 (1996).

    Article  ADS  Google Scholar 

  26. Troyer, M., Zhitomirsky, M. E. & Ueda, K. Near critical ground state of LaCuO2.5 . Phys. Rev. B 55, R6117(R) (1997).

    Article  ADS  Google Scholar 

  27. Normand, B. & Rice, T. M. Dynamical properties of an antiferromagnet near the quantum critical point: application to LaCuO2.5 . Phys. Rev. B 56, 8760–8773 (1997).

    Article  ADS  Google Scholar 

  28. Lake, B., Tennant, D. A. & Nagler, S. E. Novel longitudinal mode in the coupled quantum chain compound KCuF3 . Phys. Rev. Lett. 85, 832–835 (2000).

    Article  ADS  Google Scholar 

  29. Lake, B., Tennant, D. A. & Nagler, S. E. Longitudinal magnetic dynamics and dimensional crossover in the quasi-one-dimensional spin-1/2 Heisenberg antiferromagnetic KCuF3 . Phys. Rev. B 71, 134412 (2005).

    Article  ADS  Google Scholar 

  30. Hong, T. et al. Magnetic ordering induced by interladder coupling in the spin-1/2 Heisenberg two-leg ladder antiferromagnet C9H18N2CuBr4 . Phys. Rev. B 89, 174432 (2014).

    Article  ADS  Google Scholar 

  31. Hong, T. et al. Field induced spontaneous quasiparticle decay and renormalization of quasiparticle dispersion in a quantum antiferromagnet. Nat. Commun. 8, 15148 (2017).

    Article  ADS  Google Scholar 

  32. Hong, T. et al. Effect of pressure on the quantum spin ladder material IPA-CuCl3 . Phys. Rev. B 78, 224409 (2008).

    Article  ADS  Google Scholar 

  33. Hong, T. et al. Neutron scattering study of a quasi-two-dimensional spin-1/2 dimer system: piperazinium hexachlorodicuprate under hydrostatic pressure. Phys. Rev. B 82, 184424 (2010).

    Article  ADS  Google Scholar 

  34. Chen, W. C. et al. Recent advancements of wide-angle polarization analysis with 3He neutron spin filters. J. Phys. Conf. Ser. 746, 012016 (2016).

    Article  Google Scholar 

  35. Toth, S. & Lake, B. Linear spin wave theory for single-Q incommensurate magnetic structures. J. Phys. Condens. Matter 27, 166002 (2015).

    Article  ADS  Google Scholar 

  36. Sommer, T., Vojta, M. & Becker, K. W. Magnetic properties and spin waves of bilayer magnets in a uniform field. Eur. Phys. J. B 23, 329–339 (2001).

    Article  ADS  Google Scholar 

  37. Matsumoto, M., Normand, B., Rice, T. M. & Sigrist, M. Magnon dispersion in the field-induced magnetically ordered phase of TlCuCl3 . Phys. Rev. Lett. 89, 077203 (2002).

    Article  ADS  Google Scholar 

  38. Matsumoto, M., Normand, B., Rice, T. M. & Sigrist, M. Field- and pressure-induced magnetic quantum phase transitions in TlCuCl3 . Phys. Rev. B 69, 054423 (2004).

    Article  ADS  Google Scholar 

  39. Shiina, R., Shiba, H., Thalmeier, P., Takanashi, A. & Sakai, O. Dynamics of multipoles and neutron scattering spectra in quadrupolar ordering phase of CeB6 . J. Phys. Soc. Jpn 72, 1216–1225 (2003).

    Article  ADS  Google Scholar 

  40. Gopalan, S., Rice, T. M. & Sigrist, M. Spin ladders with spin gaps: a description of a class of cuprates. Phys. Rev. B 49, 8901–8910 (1994).

    Article  ADS  Google Scholar 

  41. Normand, B. & Rüegg, Ch. Complete bond-operator theory of the two-chain spin ladder. Phys. Rev. B 83, 054415 (2011).

    Article  ADS  Google Scholar 

  42. Christensen, N. B. et al. Quantum dynamics and entanglement of spins on a square lattice. Proc. Natl Acad. Sci. USA 104, 15264–15269 (2007).

    Article  ADS  Google Scholar 

  43. Dalla Piazza, B. et al. Fractional excitations in the square-lattice quantum antiferromagnet. Nat. Phys. 11, 62–68 (2015).

    Article  Google Scholar 

  44. Powalski, M., Uhrig, G. S. & Schmidt, K. P. Roton minimum as a fingerprint of magnon-Higgs scattering in ordered quantum antiferromagnets. Phys. Rev. Lett. 115, 207202 (2015).

    Article  ADS  Google Scholar 

  45. Powalski, M., Schmidt, K. P. & Uhrig, G. S. Mutally attacting spin waves in the square-lattice quantum antiferromagnet. Preprint at http://arxiv.org/abs/1701.04730 (2017).

  46. Jain, A. et al. Higgs mode and its decay in a two-dimensional antiferromagnet. Nat. Phys. (2017).

  47. Awwadi, F., Willett, R. D., Twamley, B., Schneider, R. & Landee, C. P. Strong rail spin 1/2 antiferromagnetic ladder systems: (Dimethylammonium)(3, 5-Dimethylpyridinium) CuX4, X= Cl, Br. Inorg. Chem. 47, 9327–9332 (2008).

    Article  Google Scholar 

  48. Le, M. D. et al. Gains from the upgrade of the cold neutron triple-axis spectrometer FLEXX at the BER-II reactor. Nucl. Instr. Meth. Phys. Res. A 729, 220–226 (2013).

    Article  ADS  Google Scholar 

  49. Rodriguez, J. A. et al. MACS-a new high intensity cold neutron spectrometer at NIST. Meas. Sci. Technol. 19, 034023 (2008).

    Article  ADS  Google Scholar 

  50. Moon, R. M., Riste, T. & Koehler, W. C. Polarization analysis of thermal-neutron scattering. Phys. Rev. 181, 920–931 (1969).

    Article  ADS  Google Scholar 

  51. Zheludev, A. ResLib 3.4c (Oak Ridge National Laboratory, 2007).

Download references

Acknowledgements

T.H. thanks C. D. Batista for the insightful discussion, Q. Ye for the initial neutron polarization set-up and R. Erwin for the development of 3He efficiency correction software. T.H. also thanks D. L. Q. Castro, Z. L. Lu and Z. Hüsges for the assistance during the experiment. One of the authors (M.M.) is supported by JSPS KAKENHI Grant Number 26400332. A portion of this research used resources at the High Flux Isotope Reactor, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. Access to MACS was provided by the Center for High Resolution Neutron Scattering, a partnership between NIST and NSF under Agreement No. DMR-1508249.

Author information

Authors and Affiliations

Authors

Contributions

T.H. conceived the project. F.F.A. and M.M.T. prepared the samples. The polarization apparatus and corrections were provided by W.C., T.R.G. and S.W. T.H., Y.Q., H.A., R.T.-P. and B.K. performed the neutron-scattering measurements. T.H., M.M., D.A.T., S.E.D., K.C. and K.P.S. analysed the data. All authors contributed to writing of the manuscript.

Corresponding author

Correspondence to Tao Hong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 313 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, T., Matsumoto, M., Qiu, Y. et al. Higgs amplitude mode in a two-dimensional quantum antiferromagnet near the quantum critical point. Nature Phys 13, 638–642 (2017). https://doi.org/10.1038/nphys4182

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys4182

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing